



# Industrial Consultancy & Sponsored Research (IC&SR)

A Wire Explosion Assembly for Producing Metallic Nanoparticles and a Method Thereof IITM Technology Available for Licensing

### **Problem Statement**

- Generally, nanoparticles are produced from the atomization, liquid phase reduction, method using plasma & wire explosion process (WEP) that is effective due to its inherent advantages in controlling particle size.
- The exhaustive procedure not only requires human intervention to fix the wire, supply the sufficient energy and control the spark gap, but also consumes a lot of time in collecting the nanopowder after the explosion, creating **hindrance** in the mass production.
- Thus, there is a need for a method & device that overcomes above-mentioned disadvantages of a convention wire explosion process for the creation of nanoparticles.

### Technology Category/ Market

Category: Micro & Nano Technology, Chemistry & chemical Engineering

**Industry:** Wire & cable Manufacturing

**Applications:** Drug Delivery, Nano-catalysts For Chemical Synthesis & Fuel Cells, Sensors, Micro And Nano-fluidics.

Market: The global nanomaterials market was valued at \$16.3 billion in 2021, and is projected to reach \$62.8 billion by 2031, growing at a CAGR of 14.6% from 2022 to 2031.

### **Technology**

The present patent discloses a wire explosion assembly and the method for producing metallic nanoparticles, comprising:

a wire explosion chamber connected with a wire feeding unit and a pair of pneumatic cylinders and a pair of electrodes;

a controller configured to control the wire feeding unit and the pair of pneumatic cylinders in such a manner that: the wire feeding unit provides a metallic wire supply towards the wire explosion chamber;

and the pair of pneumatic cylinders comprising a horizontal pneumatic cylinder and a vertical pneumatic cylinder

### Wherein:

The pair of electrodes comprises a high voltage electrode and a ground electrode.

- The yield and size of metallic nanoparticles is controlled by varying at least one of the power supply to the pair of electrodes; thickness of the metallic wire; and pressure applied in the wire explosion chamber.
- · The wire explosion chamber is provided with inert gas atmosphere, non-stick walls, & flat base.
- The pair the electrodes are provided with the power supply for 20s, once the metallic wire to be exploded is clamped over the pair of electrodes.
- The movement of the horizontal pneumatic cylinder and vertical pneumatic cylinder is controlled by a pair of pneumatic valves.

### Method

- providing a metallic wire supply, by a wire feeding unit, to a wire explosion chamber;
- guiding by a horizontal pneumatic cylinder, the metallic wire supplied by the wire feeding unit inside the wire explosion chamber in a horizontal direction, such that the metallic wire to be exploded, is aligned with a pair of electrodes:
- retracting movement of the horizontal pneumatic cylinder in the horizontal direction and restricting the metallic wire supply from the wire feeding unit, once a predetermined length of wire is reached;
- cutting the metallic wire supply, by an isolated wire cutter, at entry point of the wire explosion chamber once the wire is clamped on the pair of electrodes;
- ·providing a power supply through the pair of electrodes, once the metallic wire gets aligned over the pair of electrodes, in the fixed position for exploding and thereby producing metallic nanoparticles.

### **Intellectual Property**

**IITM IDF No.:** 2223; **Patent No.:** 418684 (**Granted**)

# TRL (Technology Readiness Level)

TRL - 3; Proof of Concept

**CONTACT US** 

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras **IITM TTO Website:** 

sm-marketing@imail.iitm.ac.in https://ipm.icsr.in/ipm/

Phone: +91-44-2257 9756/ 9719

**Email**: smipm-icsr@icsrpis.iitm.ac.in



Industrial Consultancy & Sponsored Research (IC&SR)

# A Wire Explosion Assembly for Producing Metallic Nanoparticles and A Method Thereof

**IITM Technology Available for Licensing** 

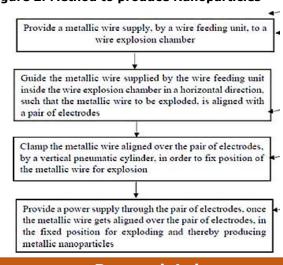

# **Images** Wire Cutting Metal Vertical Pneumatic Cylinder Pressure Gauge Motor **Gas Inlet Valves** Explosion Chamber Metal Wire Spool Teflon Driving Horizontal cyliners Pneumatic Cylinder **Ground Electrode Base Support** HV electrode

Figure 1: Schematic diagram of Automation Unit

# **Key Features / Value Proposition**

- It provides hustle free guiding path for the metallic wire fed properly in explosion reactor and helps wire to settle over electrodes.
- · Preserving the metallic content is important to utilize the produced high purity unoxidized **nanoparticles** in real time applications.
- The present art is composed of a wide base and **non-stick powder reactor**, which encompass the produced powder in the chamber, resulting in higher collection efficiency of produced powder almost counting 90 to 95%.
- The **increased length** of the wire in comparison length improves the existing production yield by 62.5%.
- It provides higher yield with controllable sizes of metallic nanoparticles by varying parameters.
- It can transmute the solid metallic wire into size controllable nanoparticles in the range of microseconds in each of the explosion cycle.
- It provides a **strong support** and grip for the fed wire with the help of pneumatic cylinders, for the **flawless** explosion in every cycle.

Figure 2: Method to produce Nanoparticles



### Research Lab

### Prof. Jayaganthan

Department of Engineering Design

### Prof. Chakravarthy S R

Department of Aerospace Engineering

#### **Prof. SARATHI R**

Department of Electrical Engineering

## **CONTACT US** Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719