

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

SINGLE LAYER FLEXIBLE DISPLAY AND METHOD OF MANUFACTURING THE SAME IITM Technology Available for Licensing

Problem Statement

- Existing technologies for display applications such as LCDs, OLEDs electrochromic displays, and QD displays are not cost-effective for a large variety of applications, especially when the switching frequency requirements are low.
- There is need for cost-effective solutions, involving touch sensors replacing the complex device fabrication and implementation with highly conducting layer for sensing, and transparency so that the display beneath can be visible

Intellectual Property

- IDF 2152
- IITM Ref. IN 435167(Granted)

Technology Category/ Market

Category – Advanced Material and Manufacturing Applications –Communication systems, Interactive displays, Electrical Appliances, Manufacturing, Automobile, Entertainment,

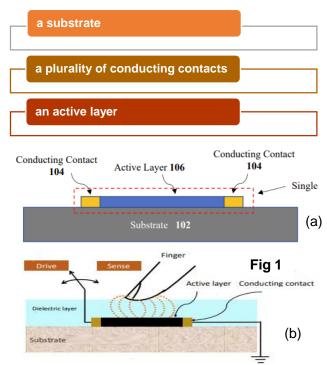
Industry-Manufacturing, Entertainment, Automobiles Market -The global display market size was valued at \$114.9 billion in 2021, and is projected to reach \$216.3 billion by 2031, growing at a CAGR of 6.7% from 2022 to 2031.

Key Features / Value Proposition

* Technical Perspective

- Display and touch functionalities assigned to the same material layer i.e.active layer
- The plurality of segments is electrically coupled to the plurality of conducting contacts to provide desired display pattern (Eg:7-segment displays, matrix displays, complex pattern) on application of electrical signal
- The touch display device is assigned with display drive and touch sensing functionalities according to time-division multiplexing

 Display device can hold its state for an extended period of time without a voltage drive, and thereby low power consuming


* User Perspective:

- Single-layer display device structure, and thereby simple and easy to fabricate.
- A wide variety of display configurations can be fabricated and implemented.
- Display device are mechanically flexible and in conformity with standard

Technology

☐ The present invention relates to a single layer flexible display device (Fig.1a) and method of manufacturing the display device

A single layer flexible display device includes:

CONTACT US

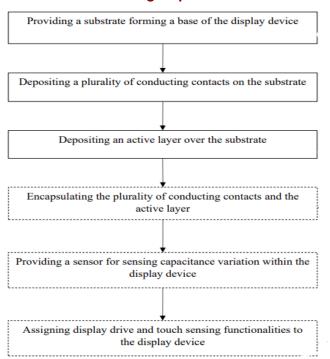
Dr. Dara Ajay, HeadTechnology Transfer Office,
IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719


IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

- ☐ The single layer flexible display device, may have touch functionality incorporated in it., Fig.1(b).
- □ A touch display device has :
- √ a transparent dielectric layer deposited over the active layer and
- √ a sensor coupled with the active layer configured to sense capacitance variation
- ☐ The transparent encapsulation layer encapsulates the plurality of conducting contacts and the active layer
- ☐ The sensor senses the capacitance of a capacitor formed within the display device, by at least one segment of the plurality of segments, the transparent encapsulation layer, and user's finger
- One segment of the plurality of segments acts as a first capacitor plate, the transparent encapsulation layer act as dielectric, and the user's finger acts as a second plate of capacitor

Method of manufacturing the display device involves the following steps:

Image

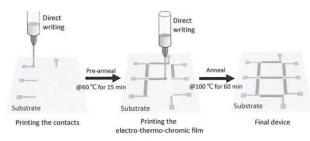


Fig 2. The fabrication of a seven-segment display is shown with contacts and segments are patterned by direct writing followed by low temperature annealing

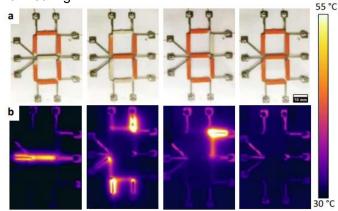


Fig. 2 illustrates exemplary seven-segment display structure of a display device, whereby the said display with numbers '0', '4', '6', '8', are displayed

The segment that turned on appears decoloured and hence appear as white with increased temperature

Research Lab

Prof. PARASURAMAN SWAMINATHAN

Dept. of Metallurgical and Materials Engineering Engineering,

Prof. DEBDUTTA RAY

Dept. of Metallurgical and Materials Engineering Engineering,

TRL (Technology Readiness Level)

TRL-3 Experimental proof of concept

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719