

# TTO - IPM Cell



# Industrial Consultancy & Sponsored Research (IC&SR)

# Organic Catholyte Material for Aqueous organic flow battery **IITM Technology Available for Licensing**

#### **Problem Statement**

- •Redox flow battery systems store energy in electrolyte solutions (a positive solution & a negative solutions) which flowed respective electrode compartments of the cells of a multi-cell electrochemical reactor during charge & discharge process.
- Conventional vanadium redox flow battery systems use vanadium ions (100%) for gigawatts(GW) energy storage applications. However said vanadium is one of scarce material, wherein 88% of total vanadium (15MMT) available in earth are from China, Russia, & Australia.
- Hence, there is a need exists for alternatives organic compound, which like ubiquitous across the globe, which may be addressed the solutions of above shortcomings in term of economic significant point of view also.

# Technology Category/ Market

**Technology:** Organic Catholyte Material for Aqueous organic flow battery;

Industry: Renewable Energy Storage, Battery; Applications: Renewable energy Electric vehicle, Solar & others;

Market: The global Aqueous organic redox flow battery market is projected to reach \$718M by 2030, growing at a CAGR of 15.6% during the forecast period (2021-2030).

## Technology

- Present invention describes an organic catholyte material for aqueous organic flow battery (Redox Flow Battery (RFB)).
- The organic flow battery comprises at least one high voltage organic redox material.
- The high voltage ubiquitous organic redox material series are stable, soluble and reversible in RFB applications.

#### **Image**

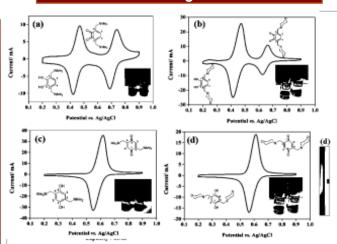



Fig.1: Illustrates graphical representation showing the cyclic 2 voltammogram of catholyte compounds

# Key Features / Value Proposition

#### \* Technical Perspective:

- The invention proposes use of Dopamine & its simple derivatives envisaged for exploration as catholyte.
- If used in vanadium redox flow battery, could reduce vanadium need by 50%.

#### \* Industrial Perspective:

 A cost effective and safe aqueous based energy system

## Intellectual Property

IITM IDF Ref. 2067; Patent Application No:202141000317;

TRL (Technology Readiness Level)

TRL- 3, Proof of Concept ready & validated

#### Research Lab

Prof. Kothandaraman Ramanujam, Prof. Indrapal Singh Aidhen,

Dept. of Chemistry

### **CONTACT US**

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras **IITM TTO Website:** 

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719