

Industrial Consultancy & Sponsored Research (IC&SR)

REDOX ELECTROLYTIC FUEL CELL FOR DESALINATION COUPLED WASTEWATER TREATMENT AND METHODS THEREOF IITM Technology Available for Licensing

1

3

Problem Statement

- In the present era, it is utmost important to save water and reuse wastewater to overcome the water scarcity.
- Owing to limited access to freshwater resources, desalination is widely practiced as an alternate source of portable water.
- There have been discussed a few non-patent and patent literatures regarding desalination techniques for wastewater treatment.
- The prior arts techniques required huge cost and need external power as input for proper desalination and tedious process to remove metal contaminated wastewater.
- The prior art literatures has failed to disclose the solution as described in the present invention which address above issues efficiently.

Technology Category/ Market

Chemical Engineering: Electrochemical cell; **Industry:** Wastewater treatment plant, Clean Energy, Test Equipment, Automotive, Advanced material.

Applications: Fuel cell or batteries, Serve as a source of clean environment with power production from various water bodies in several remote location, wastewater treatment plant.

Market: The global water **electrochemical cell** market is projected to reach US\$1252.00 million by the end of 2027, at a CAGR of 25.05% during forecast period of 2021 to 2027.

Technology

- Present Patent describes a fuel cell, and electrochemical method using redox species for simultaneous wastewater treatment and desalination.
- Further, said patent does not require any external energy to be supplied as input.

Said Patent talks about a electrochemical fuel cell which comprises a plurality of chambers:

•1st chamber filled with nitrogenous waste wherein anode is submerged in the nitrogenous waste; (Anode is nickel foam), wherein 1st chamber responsible for organic electrooxidation and electric production;

•2nd chamber filled with brine, & the 3rd chamber (cathode chamber) filled with Cr(VI). Cathode chamber for Cr(VI) reduction; & middle chamber for desalination (cathode is catalyst free carbon brush).

•Cow Urine/urea is chosen as anolyte which leads to organic oxidation at anode & inorganic reduction in terms of Cr(VI) reduction at cathode, which further leads to the redox reaction simultaneously.

The process leads to the nitrogenous waste (urea/cow urine) oxidation and reduction of Cr(VI) along with desalination in a redox cell.

Intellectual Property

IITM IDF Ref. 1655; IN Patent No. 354452 (Granted)

TRL (Technology Readiness Level)

TRL- 3/4, Proof of concept ready, tested and validated in laboratory.

Research Lab

Prof. Raghuram Chetty; Department of Chemical Engineering, IIT Madras

Prof. Indumathi M Nambi; Department of Civil Engineering, IIT Madras

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: smipm-icsr@icsrpis.iitm.ac.in

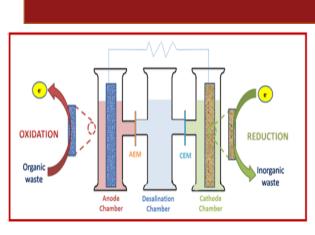
sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

Industrial Consultancy & Sponsored Research (IC&SR)

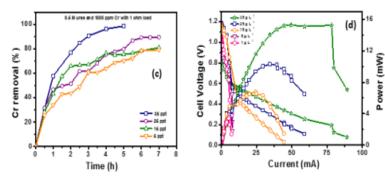
REDOX ELECTROLYTIC FUEL CELL FOR DESALINATION COUPLED WASTEWATER TREATMENT AND METHODS THEREOF **IITM Technology Available for Licensing**

Key Features / Value Proposition

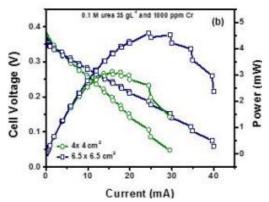

* Technical Perspective:

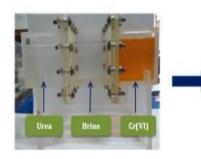
- 1. An electrochemical fuel cell compact in size, used for reduction of Cr(VI) to Cr(III) from wastewater.
- 2. Said cell generates power from contaminated wastewater.

Indian Institute of Technology Madras


* Industrial Perspective:

- 1. Power production from the electrochemical cell and this technology is a standalone process or can be suitably combined with conventional reverse osmosis to save on cost.
- 2. Industrial usage for chromium reduction, desalination, wastewater treatment, urea oxidation.




FIG.1: Illustrates the schematic of electrochemical cell.

FIGs.2A & 2B: Illustrate Cr(VI) reduction on carbon brush cathode at different brine concentration, and $\mathrm{P}_{\mathrm{max}}$ of different brine concentrations (35 gL-1 to 1 gL-1) of ECDC with 0.5 M urea and 1000 ppm Cr as optimized condition

FIGs.3A & 3B: P_{max} curve with 0.1M urea, 35 gL⁻¹ brine and 1000ppm Cr(VI). Image showing the color change of Cr(VI) from dark yellowish-orange to green.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719