

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Metal Free Catalysts for the Ring-Opening Polymerization of cyclic Esters and Lactide **IITM Technology Available for Licensing**

Problem Statement

Indian Institute of Technology Madras

- Synthetic petrochemical-based polymers have had a tremendous industrial impact, including two major drawbacks such as nonrenewable resources in the production of polymers, & ultimate fate of these large scale **commodity** polymers.
- Further, a few non-patent literature discussed about the ring opening polymerization which has clearly been stimulated by the promising results obtained with pyridines & phosphines.
- Further a few patent literatures discussed regarding various polymerization reaction for preparation of poly lactides, however those metal catalyst suffers from extreme hydrolytic sensitivity & limited solubility features which restricts to use those catalyst
- Hence, there is a need to address the issues & present invention provides the sustainable solution to mitigate above issues.

Technology Category/Market

Technology: Metal Free Catalysts for the Ring-Opening Polymerization;

Industry: Home Appliances, Surgical/Medical Applications: Flexible Films, applications, rigid containers, drink medical cups, applications.

Market: The global market is projected to grow at a CAGR of 15.6% during forecast period of 2021 to 2027.

Intellectual Property

IITM IDF Ref. 869; Patent No.312778

Technology Readiness Level)

TRL-3/4, Proof of Concept & validated in Lab

Research Lab

Prof. Debashis Chakraborty Department of Chemistry,

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Technology

- Present invention describes a process for synthesizing an environmentally benign biodegradable polymer with a high number average molecular weight M_n comprises of rina opening polymerization of а selected monomer of ϵ -caprolactone (CL) or Llactide (LA) with an active catalyst and benzyl alcohol in a predetermined feed ratio and in a solvent free condition.
- The selected catalyst is having a general formula: wherein
- **R1** may be NH_2 or OEt;
- R2 may be OEt or Oph,

1

2

3

The process involves method for synthesizing an environmentally benign biodegradable polymer;

The feed ratio of monomer, catalyst & benzyl alcohol ranges from 200:1 to 1000:1 or 200:1:3 to 200:1:20 and more preferably 200:1 or 200:1:3;

The number average molecular weight of the polymer is between **2.0 kg/mol & 80.78 kg/mol** & molecular weight distribution is between 1.1 and 1.3.

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IIT MADRAS Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

* <u>Technical Perspective:</u>

- 1. Present patent provides a **polycaprolactone** which is **synthesized from the selected monomer εcaprolactone (CL)**.
- 2. Further, present patent provides a **polylactide** which is **synthesized** from **the selected monomer L-lactide (LA)**.

* Industrial Perspective:

- 1. Present Patent is utilizing metal free catalyst & used for biomedical application.
- 2. It is an eco-friendly, green & sustainable process of synthesis of biodegradable polymers using new catalysts.
- 3. Cost-effective process & environmentally benign biodegradable polymer employing active metal free catalyst.

FIG.1: Illustrates the Plot of $\rm M_n$ vs $\rm [CL]_o/[Cat]_o$ for CL Polymerization at 80°C using the catalyst

FIG.3: Illustrates the CL conversion vs time plot using the catalyst 1

Table 1: Results of CL polymerization with 1 at 80 °C.

Catalyst	[CL] ₀ /[Cat] ₀	t ^a (h)	10 ³ Mn ^b (Kg/mol)	MWD	
1	200	24	38.30		
1	400	27	50.97	1.3	
1	600	29	65.43	1.2	

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

FIG.2: Illustrates the Plot of M_n vs $[LA]_o/[Cat]_o$ for LA Polymerization at 150°C using the catalyst

Fig. 4

FIG.4: Illustrates the LA conversion vs time using catalyst 1 $\ensuremath{\mathsf{1}}$

Table 2 Results of LA polymerization with 1 at 150 °C.

Entry [LA]。 /[Br	[LA] _o /[Cat] _o	[LA]o	ta	Yield	10 ³ M _n	PD
	/[BnOH]。	/[BnOH]。	(h)	(%)	b(Kg/mol)	
1	200:1:0		24.0	98.0	38.3	1.2
2	200:1:3	66.66	20.0	98.2	3.4	1.1
3	200:1:5	40	17.5	99.0	3.1	1.1

Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719