

Industrial Consultancy & Sponsored Research (IC&SR)

CTAB-Templated Synthesis of Nanocrystalline Ordered Mesoporous Titania (TMC-016) **IITM Technology Available for Licensing**

Problem Statement

- Titania (TiO2) has superior physicchemical properties, making it structural stabile, non-toxic, highly photocatalytic active and of low cost.
- To Improve catalytic properties of TiO2 different morphologies, generation of **defects** with various synthetic strategies.
- · Therefore it is important to study ordered mesoporous titania (OMT) materials which is difficult to synthesize due to the high electrophilicity of Ti4+ ion making uncontrolled hydrolysis-condensation and phase separation between surfactant template and precursor, resulting in rapid dense phase disordered materials formation.
- Based on the foregoing a need therefore exists for an improved process to synthesize an advanced material that addresses above mentioned issues.

Technology Category/ Market

Category: Chemistry & Chemical Analysis, Advanced Material & Manufacturing

Application: purification of air and water, H2O splitting, CO2 reduction, photocatalytic

Industry: Advanced Material, Catalyst, Photocatalyst, Chemical Manufacturing

Market: The global market size of titanium in 2022 amounted to \$ 28.59 B. As of June 2023, the market value of titanium was projected to grow to nearly \$ 31 B. The titanium market size is forecast to grow to nearly \$ 52 B in yrs 2023-2030.

Technology

The present patent proposes an improved process for synthesis of ordered 2Dhexagonal mesoporous titania using cationic surfactant cetyltrimethylammonium structure bromide (CTAB), directing template Titania (TMC-016). Refer FIG 1 and FIG. 2 with respect to Table 1

Key Features / Value Proposition

> <u>User Prospective:</u>

- High Surface Area
- High Thermal Stability
- Tenable/Narrow Pore Diameter
- Active Phase Composition
- Thick Pore Walls
- · Prevents mesostructure collapsing on surfactant removal.
- Cost efficient & Non-toxic
- > Industrial Prospective:
- TMC-016 is systematically characterized to study the **photocatalytic activity** of material to degrade 4-chlorophenol.
- The molar ratio in resultant solution Ti(OiPr)4/HCI/CTAB/n-butanol was 1:2:204:0.0609:11.020.
- The preparation of **TMC-016** takes place via evaporation induced self-assembly (EISA) method.
- The ordered structure higher has hydrophobicity than ethanol.
- It effectively prevents nucleophile attack (H2O) on Ti4+.
- It controls phase separation between surfactant and titania precursor.

(b) Rietveld refined XRD pattern of TMC-016.

FIG. 1 illustrates a graph representation of the XRD patterns of TMC-016 (Left) & Rietveld refined XRD patterns 2 of TMC-016 (Right)

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/ Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

Industrial Consultancy & Sponsored Research (IC&SR)

CTAB-Templated Synthesis of Nanocrystalline Ordered Mesoporous Titania (TMC-016)

IITM Technology Available for Licensing

Process

The method comprises of the following steps:

Preparing a first solution (Solution A) was prepared by dissolving 0.896 mmol (326 mg) CTAB in 0.162 mo/ (12 g) n-butanol to obtain homogenous solution;

 Preparing a second solution (Solution-B) by dropwise addition of 0.0324 mol (3.2 g) conc. HCl into 0.0147 mol (4.2 g) titanium (IV) tetraisopropoxide under 30 min vigorous stirring

 Adding Solution-A dropwise into Solution-B under uniform stirring at room temperature and further stirred for 6 h to get a clear, homogenous solution;

 Pouring resulting clear solution into Petri-dishes with uniform thickness and evaporating it in hot oven at 45°C for 7 days to trigger self-assembly;

 Forming organic-inorganic mesostructure with hydrolysis and condensation of the inorganic precursor into a periodic mesoporous network;

•Calcinating the synthesized resultant sample at 350°C for 4 h in air at heating rate of 0.5°C/min to obtain 2D-hexagonal ordered mesoporous TiO2 (TMC-016).

Intellectual Property

IITM IDF Number: 1805 IP Patent Number: 369497 (Granted)

TRL (Technology Readiness Level)

TRL – 4; Technology validation in Lab

Research Lab

Prof. Selvam P NCCR & Department of Chemistry

Images

FIG. 2 illustrates a graphical representation of 500 TEM images of TMC-016 with a confirm long range ordered channels and selected area electron diffraction (SAED) confirms crystalline framework. a. 200 nm; 100 nm;

b. 10 nm- Lattice fringes with dspacing 3.6 Å correspond to (101) plane of anatase phase;

c. 51 nm

corresponding The structural, textural properties are given in Table 1

Table 1

Catalyst	°E, (eV)	^b S _{вет} (m ² g ⁻¹)	°V _P (cm³/g)	^d D(nm)		е,	4-CP degradation	
				вјн	TEM	(nm)	$(\times 10^{-3} min^{-1})$	⁹ DE (%)
TMC-016	2.9	125	0.13	3.5	5.0	6.5	11	81
P25	3.3	53	-	-	-	-	6	53

^aBand gap; ^bSurface area; ^cPore volume, ^dPore diameter; ^eWall thickness; (h_w = a₀ - DBJH); ^fFirst order rate constant; ^gDegradation efficiency.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719