

Industrial Consultancy & Sponsored Research (IC&SR)

MASSIVELY PARALLEL HIGH THROUGHPUT SINGLE-CELL OPTOPORATION IITM Technology Available for Licensing

Problem Statement

Indian Institute of Technology Madras

- Single cell intracellular deliverv faces challenges cell due to membrane necessitating impermeability, disruptive methods.
- Existing techniques focus on bulk cargo delivery, resulting in low efficiency and reduced cell viability.
- Collecting data from individual cells is essential, requirina parallel high-throughput deliverv methods.
- Cell culture randomness hinders monitoring and organization of single cells for research.
- There is a need for improved delivery approaches and methods for parallel singlecell therapy and analysis to advance the field.

Intellectual Property

- IITM IDF Ref. 2005
- IN 202041031463
- PCT/IN2021/050706 Published
- US18006098

Technology Category/ Market

Category - Biomedical, Bio-MEMS device

Applications - Personalized medicine and regenerative medicine applications. Industry- Biomedical, Cellular therapy.

Market-The global Bio-MEMS market size is forecast to reach \$15.5 billion by 2027, growing at a CAGR of 11.68% from 2022 - 2027.

TRL (Technology Readiness Level)

TRL - 3, Proof of concept stage.

Research Lab

Prof. Tuhin Subhra Santra, Dept. of Engineering Design

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR. IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

	1-	1							100			145	1	
	(d) 🐉	14	$t_{\rm eve}^{\rm eve}$	÷.	ŝ	2	- 44	-	1	14	12	-	÷
	2	12			2 4	1.			-	÷e	4	4	32	
	ş	9	*	15		*	÷.	2	e.	\$	1	1		8
	•	1	2	8	-	\$	1	¥	膝	٠	3	43	100	10
	-	1	-	the second	95	0		5	3	\$	s,	1	-	ű.
	5	ŧ	s'	•	2		17	*	W.	\$	e^,	, 6	\$	3
	ų:	4	*	Å:	No.	\$	10	÷	8	10	8	\$2	<u></u>	
	ą,	4	11	-	58	\$	-	45	14	3	4	8	÷.,	.4
	42		10	5	4	-		-1	7	15	ţů.	47	33	*
	4	-5	٦.	*	•	1	15	\$	100	-		100	μm	4.
													Contra Cont	

Hole size : 50 µm, Interspace : 100 µm

FIG. 2. illustrate an exemplary graphical representation of single-cells patterning (calcein AM staining) using SU-8 membrane holes using an array of 50 µm hole size and 100 µm interspacing.

Technology

•The present invention relates to massively parallel high throughput single cell patterning technology and intracellular delivery techniques.

•The method teaches use of parallel single-cell patterning technique using SU-8 membrane and nano-second pulsed laser espouse on single-cell with micro-dish pattern device structure (Fig. 1, 2 & 3).

3

•The platform is able to effectively deliver different (small to large) cargo in a different cell type with high transfection efficiency and high cell viability at parallel single-cell resolution. Fig. 4.

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

Indian Institute of Technology Madras

- 1. Massively Parallel Single-Cell Patterning: The method offers a unique approach to pattern single cells in a massively parallel high-throughput fashion, allowing for precise control and organization of individual cells.
- 2. High Transfection Efficiency: It achieves high transfection efficiency and cell viability, enabling the effective delivery of various cargo sizes to different cell types.
- 3. Versatile Cell Patterning: The platform can accommodate single-cell patterning with varying hole sizes, making it adaptable to different cell types and research needs.

Fig.1. Cleaned glass/silicon substrate (b) SU-8 based array of hole formation using lithographic process (c) membrane release from substrate (d) SU-8 membrane transferred on petri dish/cleaned glass substrate and cultured cells on top of the substrate (e-f) after cell adhere on substrate, SU-8 membrane release and array of single-cell hole formation was achieved (g) cell impermeable biomolecules introduce on top of the single-cell (h) array of metal (Ti/Au) micro-dish align on top of the cell (i) pulse laser exposure and massively parallel high throughput single-cell delivery was achieved.

FIG. 1(a)-1(i) illustrates a schematic view of the cell culturing platform (SU-8 membrane) demonstrating various steps involved in method.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IIT MADRAS

Technology Transfer Office

Industrial Consultancy & Sponsored Research (IC&SR)

Hole size : 40 μm , Interspace : 100 μm

FIG. 3 illustrates single- cell (SiHa cells) printing using SU-8 membrane holes using an array of 40 μm holes size and 100 μm interspacing.

FIG. 4. illustrates fluorescence image of massively parallel high throughput single-cell intracellular delivery to spatially isolated SiHa cells (Cervical cancer).

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719