

Industrial Consultancy & Sponsored Research (IC&SR)

NANOPARTICLES AND THE PROCESS FOR PREPARATION THEREOF FOR FIXED COMBINATION MONOTHERAPY

IITM Technology Available for Licensing

Problem Statement

- Current glaucoma treatments face challenges in achieving sustained drug release & maintaining consistent Intraocular Pressure (IOP) Control.
- · Conventional eye drops may result in limited bioavailability and patient compliance, leading to suboptimal treatment outcomes.

There is a need for innovative drug delivery systems that can provide controlled & prolonged drug release for better glaucoma management while minimizing the side effects & increasing the patient adherence.

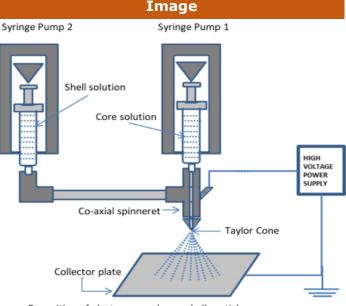
The instant patent addresses the above given issues by disclosing a process for preparation of nanoparticles for fixed combination Monotherapy.

Technology Category/ Market

Medical & Categories: Surgical Devices, **Biotechnology & Genetic Engineering**

Industry: Pharmaceutical Industry, Ophthalmic Drug Development, Biotechnology, R&D, Regulatory/ Compliance Services, Medical Device Manufacturing

Applications: pharmaceutical and ophthalmic industries, offering improved drug delivery for glaucoma treatment; to boost drug efficacy, reduced side effects, medical device Mfg, investment sectors.


Market: The global novel drug delivery systems in cancer therapy market size was valued at USD 4.31 B in 2016. It is projected to reach USD 26.61 B by 2025, growing at 22.9% CAGR during 2017-25.

Technology

- · The present patent discloses Nanoparticles and the **Process** for Fixed Combination Monotherapy.
- This patent is about using small particles to deliver drugs for treating glaucoma.
- These particles have a **unique structure** that allows for controlled drug release. Special materials and methods are used to enhance treatment effectiveness, and Betacyclodextrin is used to improve drug absorption in the eyes.

Intellectual Property

IITM IDF No: 2404; IP Grant Number: 449238

Deposition of electrosprayed core-shell particles

Fig 1: shows a schematic diagram of drug loaded core-shell delivery system & electrospraying system.

Key Features / Value Proposition

* User Perspective:

- Effective Glaucoma Treatment: Provides better glaucoma treatment with controlled drug release.
- Enhanced Patient Adherence: Reduces dosing frequency, improving patient compliance.
- Improved Quality of Life: Potential for better management of intraocular pressure.

* Industrial Perspective:

- Innovative Drug Delivery: Demonstrates advanced technology in pharmaceutical manufacturing.
- Market Expansion: Opens new opportunities for pharmaceutical companies.
- Diverse Product Portfolio: Allows for the development of novel glaucoma therapies.
- * Technological Perspective:
- Advanced Nanoparticle Design: Core-shell nanoparticles enable combination therapies.
- Fine-tuned control of particle characteristics.
- Enhanced Drug Absorption: Functionalization improves drug delivery through ocular tissues.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/ Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

Industrial Consultancy & Sponsored Research (IC&SR)

NANOPARTICLES AND THE PROCESS FOR PREPARATION THEREOF FOR FIXED COMBINATION MONOTHERAPY IITM Technology Available for Licensing

It is a process to create tiny drug-delivery particles with a core and shell for better eye treatment.

•Nanoparticle Creation: The process nanoparticles.	begi	ns by making	tiny core-shell	
•Core Solution: A mixture is made fo and a liquid (acetonitrile).	r the	core. It includ	es a polymer, a	a drug,
•Shell Solution: Another mixture is condrug, and a mix of liquids.	reate	d for the shell.	It has a polym	ner, a
•The core and shell mixtures are spra voltage, to small particles.	yed t	hrough a spec	ial needle with	high
•Collecting and Drying: These partic dried to fine powder.	les ai	re collected on	a metal plate,	then
•Functionalization: The drug-carryin it penetrate the eyes better.	g pov	vder is mixed v	with a substand	ce to help
•Freeze-Drying: The final product, sp drying.	heric	al nanoparticle	es, is made by	freeze-
	heric	al nanoparticle	es, is made by	freeze-
	PA3BT/PA6TM	·		
drying.		·		
drying. Fig. 2. HET-CAM Assay of PG3BT/PA6TM & fPG3BT/PA6TM TRL (Technology Readiness Level) RL - 3, Experimental proof of concept.	fPG3BT/PA6TM PA3BT/PA6TM	·		
drying. Fig. 2. HET-CAM Assay of PG3BT/PA6TM & fPG3BT/PA6TM TRL (Technology Readiness Level)	PA3BT/PA6TM	·		

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719