

Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

HYBRID WING DEVICE AND METHOD OF ACTUATION

IITM Technology Available for Licensing

Problem Statement

- Current aircraft rely on rigid wings and control surfaces, leading to suboptimal aerodynamics and increased fuel consumption.
- There's a need for adaptable monolithic wings, but efficient actuation mechanisms are crucial for achieving this.
- Smart materials like MFCs and SMAs have been explored for actuation, but they have limitations such as poor actuation authority and slow response time.
- Electro Active Polymers (EAPs) are still in early development and not practical for aerospace applications yet, leaving a gap in suitable actuator options for morphing wings

Technology Category/ Market

Category - Aerodynamics

Applications - Aircraft, Minimizing aerodynamic or hydrodynamic drag

Industry - Aerospace, Wind Energy

Market- The global aerodynamic market is anticipated to reach US\$ 32.44 billion by 2028 and is predicted to register a **CAGR of 4.8%** during 2023-2028.

TRL (Technology Readiness Level)

TRL - 3: Proof of concept stage.

Key Features / Value Proposition

- The structure may be used in the wings of any aerial vehicle such as UAVs, and helicopters, or any aerodynamic or hydrodynamic structure such as a wind turbine, hydrofoil etc. for controlling lift.
- The device minimizes minimizing aerodynamic or hydrodynamic drag and provision of effective control action via optimized actuation of control surfaces.
- The device provides enhanced aerodynamic efficiency by having a hinge-less design and reduces energy loss.

Intellectual Property

- IITM IDF Ref. 1736
- IN 381604 Patent Granted

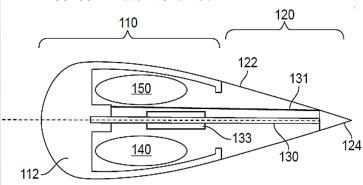


FIG.1. illustrates a schematic of the hybrid wing device.

Technology

The invention discloses a compliant aerofoil device configured to change its profile in flight using shape memory alloy (SMA) and piezoelectric composite elements in response to control inputs.

Device

• The device is formed of a rigid leading edge part (110) including a D-spar and a compliant trailing edge part(120), connected by an elastically deformable membrane(130).

• The Trailing edge part (120) includes a flexible shell(122) and a rigid tail tip portion (124).

 The invention discloses a method of controlling an aerodynamic or hydrodynamic structure by providing at least one tensile element along with one or more bending elements.

Research Lab

Prof. A. Arockiarajan, Prof. Shaikh Faruque Ali,

Dept. of Applied Mechanics & Biomedical Engineering

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719