

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

SYSTEM AND METHOD FOR AUTOMATED FILTERING OF SALIENT ANATOMIC FEATURES IN AN ULTRASOUND IMAGE **IITM Technology Available for Licensing**

Problem Statement

Indian Institute of Technology Madras

- Unauthorized viewing and diagnosis of sensitive anatomical features in ultrasound images, such as fetal gender, is a challenge, particularly in regions with regulations against gender identification.
- need This invention addresses the for an automated system to filter out and prevent access to restricted anatomical features in ultrasound scans, ensuring compliance with regulations and privacy protection.

Technology Category/Market

Category – Medical Imaging Technology

Applications - Biomedical Engineering, obstetrics, Gynecology

Industry - Medical Device Manufacturing, Healthcare Market - Medical Imaging Market size was worth USD 40 billion in 2022 and is poised to grow at 5.5% CAGR from 2023 to 2032, driven by the incremental innovations and advancements in medical imaging technology.

Intellectual Property

- IITM IDF Ref. 1944
- IN 201941040741

Key Features / Value Proposition

Technical Perspective:

This technology uses deep learning for real-time identification and filtering of sensitive anatomical features in ultrasound images.

User Perspective:

It simplifies compliance with regulations for healthcare professionals and enhances privacy for patients during ultrasound exams.

Technology

Deep Learning:

Utilizes deep neural networks, specifically Convolutional Neural Networks (CNNs), to process and analyze ultrasound images.

Real-time Image Processing:

Performs automated filtering of sensitive anatomical features in ultrasound images in real-time, ensuring immediate compliance with privacy regulations.

Data Pre-processing:

Pre-processes image data using a neural network architecture to identify and filter out salient anatomical features, such as fetal gender indicators.

Network Training:

Trains the deep-learning network with a balanced dataset of data classes, enabling accurate and reliable detection and filtering of anatomical features.

Integration:

Can be integrated with ultrasound machines and healthcare systems to enhance privacy protection and regulatory compliance in medical imaging.

Research Lab

Prof. Arun K Thittai Dept. of Applied Mechanics Prof. Ganapathy Krishnamurthi Dept of Engineering Design

TRL (Technology Readiness Level)

TRL- 4 Technology validated in Lab.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Indian Institute of Technology Madras

Fig. 1 A graphical representation of a system for automated filtering of sensitive anatomical features in ultrasound images to prevent unauthorized viewing and diagnosis.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/ Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719