

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

SOLAR DRIVEN PHOTOCATALYST FOR WATER PURIFICATION

IITM Technology Available for Licensing

Problem Statement

- Global access to safe and clean drinking water is still a distant goal, with water sources contaminated by a variety of emerging contaminants (ECs).
- Conventional water treatment methods are ineffective against the low concentrations of these contaminants, leaving many water sources unfit for consumption.
- Utilizing solar-driven photocatalysts to remove contaminants in real-time conditions is a significant challenge, particularly in regions with abundant sunlight like India.
- Developing effective and practical solutions for solar-driven water purification is essential.

Intellectual Property

- IITM IDF Ref. 2413
- IN 202241058404

Technology Category/ Market

Category - Water Purification

Applications- Water Treatment, Solar-Powered Purification, Photocatalyst in contamination and pollution challenges.

Industry - Environmental Remediation, Water Purification.

Market- The global solar water purifier market size is forecast to reach \$3.5 billion by 2027, growing at a **CAGR of 8.92%** from 2022 to 2027.

TRL (Technology Readiness Level)

TRL - 3: Proof of concept stage.

Research Lab

Prof. A. Arockiarajan,

Dept. of Applied Mechanics & Biomedical Engineering

2. Photocatalytic Plate

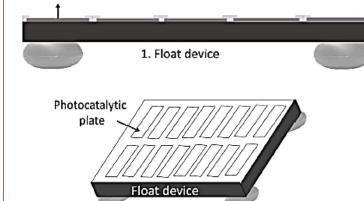


FIG.1. Shows the photocatalytic sheets/plate mounted on the floating device.

Technology

The present invention relates to a liquid purification floating device comprising a photocatalyst comprising a nanocomposite of oxides of tantalum and niobium or non-metaldoped oxides of tantalum and niobium nanocomposites or both. (Fig. 1&2)

1. Components

 The device consists of a float and a photocatalyst nanocomposite sheet or thin film.

2. Float Function

•The float is designed to remain afloat on a fluid surface.

3. Photocatalyst Nanocomposite

•The device incorporates a photocatalyst nanocomposite sheet or thin film, which contains a photocatalyst.

4. Pollution Decomposition

•The photocatalyst nanocomposite sheet or thin film is engineered to decompose pollutants present in the liquid, contributing to liquid purification.

Functions

 The photocatalyst efficiently degrades pollutants or contaminants present in liquid under visible, UV or solar radiation.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

1. Innovative Photocatalyst:

This photocatalyst uses tantalum and niobium oxides or non-metal-doped oxides for efficient pollutant decomposition.

2. Versatile Form:

It can be in sheet or thin film form, suitable for various applications.

3. Compatible Substrates:

The nanocomposite can coat substrates like glass, metals, polymers, and more.

4. Effective Liquid Purification:

The device floats on liquid surfaces, effectively breaking down pollutants with visible or UV light.

5. Reusable and Replaceable:

The photocatalyst sheet is reusable and replaceable, ensuring cost-effectiveness.

6. Optional Oxidizing Agents:

Oxygen, ozone, or peroxides can be added to enhance purification.

7. Batch or Continuous:

The method is adaptable for both batch and continuous purification processes.

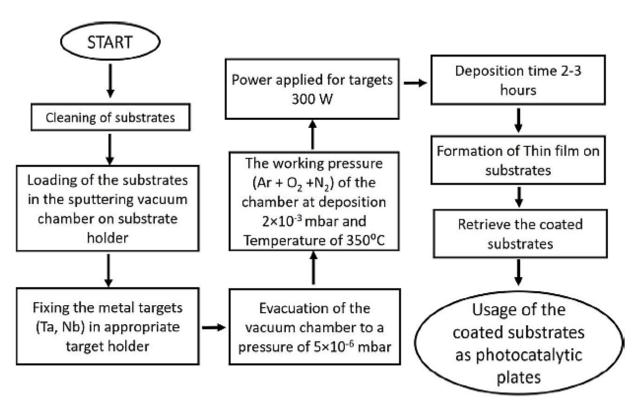


FIG. 2. Shows a flowchart of the thin film deposition procedure.

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719