

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

ELECTROMAGNETIC SOLVER UTILIZING RGB IMAGE AS INPUT AND METHODS THEREOF

IITM Technology Available for Licensing

Problem Statement

Indian Institute of Technology Madras

Computational Electro Magnetics (CEM) involves design, modeling and analysis of a wide range of devices and systems using numerical solutions to equations the said systems include Microwave Engineering, Optical and Photonics Design and validation, Radar scatter pattern analysis.

> Existing techniques such as are described as timeconsuming and lacking control over simulations

Key Features / Value Proposition

Technical Perspective

- □ The invention discloses a method and system for efficient computation and simulation of electromagnetic fields based on an RGB digital image of an equipment under test.
- □ Processing machine configured to process the digital image, extract material parameters, geometry, and boundary conditions, and simulate the electromagnetic solver.

User Perspective

- The invention provides and efficient Graphical User Interface (GUI) that intakes a RGB(Red-Green-Blue)-image as input layout for performing 2D-Electromagnetic wave simulation and analyze the computed data effectively
- The method can be incorporated ideally in electromagnetic structures such as photonic crystal waveguides, directional couplers etc.

FIG.1 illustrates the Ez field plot after 1 minute of FDTD execution with a dielectric material when 'RUN SIMULATION' button was pressed

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Technology

The invention provides a system and method for computing the intensity of electromagnetic fields surrounding an equipment under test (EUT)

Image Acquisition and Pre-processing:

- Capture an RGB digital image of the EUT with a predetermined spatial geometry.
- Pre-process the image to obtain material parameters, geometry, and boundary conditions as functions of spatial geometry.

Parameter Extraction:

- ✓ Extract material parameters (permittivity, permeability, and conductivity) from the red, green, and blue component intensities of each pixel.
- Extract stimuli definition parameters (source \checkmark position, source geometry, receiver position, and receiver geometry) from fixed intensity values of red, green, and blue components.
- ✓ Extract boundary conditions from fixed intensity values to identify edges of the simulation domain/ boundary geometry

Input to Electromagnetic Solver:

Receive the extracted material parameters, stimuli definition parameters, and boundary conditions by a 2D-electromagnetic solver

Simulation and Computation:

- Simulate the 2D-electromagnetic solver over the identified simulation domain.
- Compute intensity of electric/ magnetic \checkmark fields using either continuous time signal mode or discrete time signal mode.
- \checkmark Perform computation within predetermined specified excitation timeand for а frequency.

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IIT MADRAS Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

FIG. 2 illustrates the system computing the intensity of the electromagnetic field using an electromagnetic solver.

FIG. 3 illustrates Ez-plot after 5 minutes of FDTD execution with material as free space.

- □ The system disclosed in the given invention electromagnetic field computing system having a simulation tool that includes **RUN**, **PAUSE**, **RESUME and EXPORT functions**
- The electromagnetic solver can be selected from options such as Finite Difference Time Domain (FDTD), Finite Elements Analysis (FEA), Boundary Elements Methods (BEM), or Finite Integral Techniques (FIT).
- The invention provides and efficient Graphical User Interface (GUI) that intakes a RGB(Red-Green-Blue)-image as input layout for performing 2D-Electromagnetic wave simulation

Intellectual Property

- IITM IDF Ref. 1519
- IN414663-Granted

Technology Category/ Market

Category – Information & Communication Technologies (ICT)/ Computer Aided Design & CAD Analysis

Applications –Telecommunications, Software systems, hard ware applications, Microwave Engineering, photonic crystal wave guides **Industry** – Telecommunications, Electrical

Market - The Global Telecommunication Market is valued at USD 1754.8 Billion in 2022 and is projected to reach a value of USD 2652.5 Billion by 2030 at a **CAGR of 5.3% between 2023 and 2030.**

TRL (Technology Readiness Level)

TRL- 3, Experimental proof of concept

Research Lab

Prof. ANANTH KRISHNAN Dept. of Electrical Engineering

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719