

IIT MADRAS Technology Transfer Office TTO - IPM Cell



Industrial Consultancy & Sponsored Research (IC&SR)

# SYSTEM AND METHOD FOR COMPRESSED AIR RECUPERATED ENERGY STORAGE **IITM Technology Available for Licensing**

# **Problem Statement**

Indian Institute of Technology Madras

- ✓ Current energy storage solutions have limitations in efficiency and lifespan, leading to energy waste and environmental impact.
- ✓ There is a need for an energy storage system like CARES that offers high efficiency, longer lifespan, and reduced environmental impact compared to existing solutions.

# Technology Category/Market

Category – Energy Storage System

Applications – Compressed Air Recuperated Energy Storage (CARES)

Industry – Renewable energy, Power generation Market - The global energy storage systems market size was valued at US\$ 210.92 billion in 2021 and is expected to hit US\$ 435.32 billion by 2030 and poised to grow at a CAGR of 8.4% from 2022 to 2030.

# Intellectual Property

- **IITM IDF Ref. 1759**
- IN 476555 (PATENT GRANTED)

# Key Features / Value Proposition

# **Technical Perspective:**

CARES employs high-efficiency compression, controlled expansion, and thermal energy management for efficient energy storage.

#### User Perspective:

Users benefit from a reliable and environmentally friendly energy storage solution with improved efficiency, potentially lowering energy costs and reducing environmental impact.

# Technology

The invention. technology behind this Compressed Air Recuperated Energy Storage (CARES), can be summarized in five key points:

#### **High-Efficiency Compressor:**

Utilizes a high-efficiency positive displacement compressor to compress air isentropically.

#### Volumetric Control:

Employs a volumetrically controlled expander to maintain constant isentropic efficiency, irrespective of pressure ratios.

#### Cooling System:

Achieves air cooling before compression by utilizing the low-temperature exhaust from the expander.

# **Thermal Energy Circulation:**

Minimizes thermal cycling losses by circulating thermal energy from a cold expander outlet to a hot compressor inlet.

#### Versatile Applications:

Suitable for diverse applications, including renewable energy integration, grid stabilization, and industrial energy storage, offering improved efficiency and lifespan compared to conventional methods.

# Research Lab

Prof. Satyanarayanan Seshadri Dept. of Applied Mechanics

# TRL (Technology Readiness Level)

# **TRL-3 Experimental proof of concept**

# **CONTACT US**

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719



# Indian Institute of Technology Madras



# Industrial Consultancy & Sponsored Research (IC&SR)



Fig 1 illustrates a schematic of CARES

**CONTACT US** 

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

**IITM TTO Website**: https://ipm.icsr.in/ipm/ Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719