

Industrial Consultancy & Sponsored Research (IC&SR)

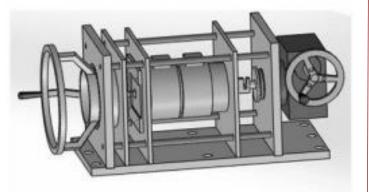
A LOW-COST PORTABLE DEVICE FOR EVALUATING STRETCH FORMABILITY AT VARYING TEMPERATURES AND STRAIN-PATHS

IITM Technology Available for Licensing

Problem Statement

Indian Institute of Technology Madras

- Conventional high-temperature stretch formability testing methods involve expensive and bulky equipment, hindering efficiency, especially for materials like Mg alloys.
- There's a demand for a low-cost, portable device addressing these limitations and offering versatility in evaluating stretch formability under various strain paths for temperature-sensitive sheet metals.


Technology Category/Market

Category – Material Testing Equipment Applications – Advanced materials, Automotive industry, Manufacturing, Aerospace

Industry – Metal Forming and Manufacturing Industry Market - The global Test and Measurement Equipment market size was valued at USD 31922.18 Million in 2022 and will reach USD 63925.62 Million in 2028, with a CAGR of 12.27% during 2022-2028

Intellectual Property

- IITM IDF Ref. 2153
- IN 398673 (PATENT GRANTED)

Technology

Electrical Resistance Heater Plate:

Utilizes advanced electrical resistance technology for precise heating during formability tests, especially at high temperatures up to 600°C.

Compact Gearbox with Worm Drive:

Features a cost-effective gearbox with a worm drive for manual operation, ensuring high precision in evaluating bi-axial and equi-biaxial strain stretch formability for thin sheets.

Versatile Sample Testing:

Capable of testing sheet metal samples with widths from 3 mm to 70 mm and thicknesses ranging from 0.2 mm to 2 mm, catering to diverse industry and research needs.

Linear Displacement High Precision Measurement:

Achieves a linear displacement measurement precision of 0.01 mm, providing accurate assessment of stretching forces applied to sheet metals.

Digital Output for Data Analysis:

Provides digital load, temperature, and linear displacement data for easy analysis, graph plotting, and integration with software systems, enabling comprehensive study of sheet metal formability under varying conditions.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/ Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

User Perspective:

- Affordable Formability Testing: Users appreciate a low-cost, portable device for efficient stretch formability testing at high temperatures, benefiting industries dealing with temperature-sensitive sheet metals.
- Versatile Application: The device's capability to test various sheet metal sizes and thicknesses makes it adaptable across automotive, aerospace, and research sectors, meeting diverse user needs.

Technical Perspective:

- Innovative Heating Technology: The use of electrical resistance technology in the heater plate ensures precise and controlled heating for accurate formability testing, especially at high temperatures.
- Precision and Ease of Operation: The compact gearbox with a worm drive enables manual operation with high precision, simplifying the evaluation of bi-axial and equi-biaxial strain stretch formability for thin sheets.

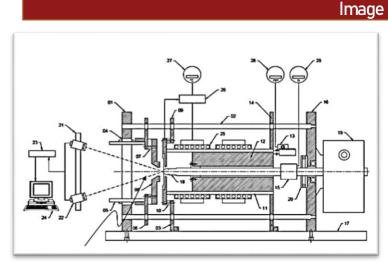


Fig. 1 shows a schematic sectional view of a low-cost portable device (100) for assessing stretch formability of sheet metals under diverse strain path conditions and temperatures.

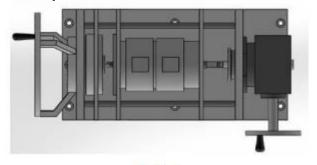


FIG. 4

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

FIG. 3

FIGS. 2-4 depict graphical views of the low-cost portable device (100) assessing sheet metal stretch formability under varied strain paths and temperatures.

TRL (Technology Readiness Level)

TRL-5, Technology validated in relevant environment

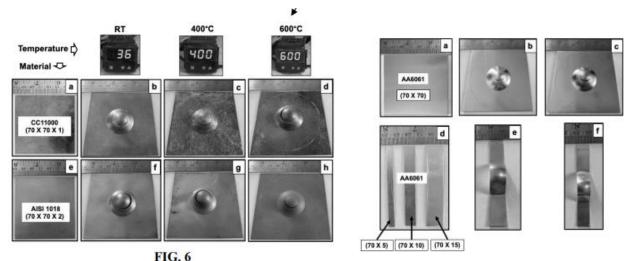
Research Lab

Prof. Sushanta Kumar Panigrahi Dept. of Mechanical Engineering

> Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)


Indian Institute of Technology Madras

Temperatures (°C)				RT	200	400	600
Sample Size	Material		Thickness	⊠-Tested ⊠-Not Tested			
(70 mm X 70 mm)	Al Alloys	AA1050	0.2 mm				X
		AA6061	0.8 mm	V			X
	Copper	CC11000	1.0 mm		V		
	Steel	AISI1018	2.0 mm				
	Mg Alloys	ZK60	1.8 mm	X	V		X
		AZ31	1.2 mm	X	V		X
	Ti Alloy	Ti6Al4V	0.7 mm	X			
(70 mm X 10 mm)	Al Alloys	AA1050	0.2 mm	V	V	V	X
		AA6061	0.8 mm				X
	Mg Alloys	ZK60	1.8 mm	X			X
		AZ31	1.2 mm	X			X

(70 mm X 70 mm) : samples for equi-biaxial stretch formability test

(70 mm X 10 mm): samples for biaxial stretch formability test at varying strain path conditions

Table 1: Equi-biaxial and Bi-axial (varying strain paths) stretch formability test

FIGS. 5-8 display photographs of test results demonstrating the functionality of the low-cost portable device (100) for evaluating sheet metal stretch formability under diverse strain paths and temperatures.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719