

IIT MADRAS Indian Institute of Technology Madras

Technology Transfer Office

Industrial Consultancy & Sponsored Research (IC&SR)

A Delta Sigma Modulator with Noise Attenuating Feedback Filters

ITM Technology Available for Licensing

Problem Statement

- Traditional delta-sigma modulators suffer from quantization noise folding due to nonidealities in chopping modulation, degrading signal-to-noise ratio, at high frequencies.
- Quantization noise at 2fchp can fold into the signal band during ADC sampling, elevating the noise floor and negatively affecting the modulator's SNR and overall performance.
- Common mode shifts in differential integrators pose challenges, leading to changes in the difference between outputs and affecting accurate signal processing.
- Hence, there is a need of a new technology to addresses all the above mentioned issues.

Technology Category/ Market

Categories: Electronics & Circuits

Industry: ΔΣ Modulation, DAC Bit Width & Loop Configuration, Amplifier, Electronic System & Design Manufacturing (ESDM), High-precision Analog-to-Digital Converters (ADCs)

Applications: IT, Telecom, IoT, Consumer Electronics, Data Converters, Audio Processing, Sensor Interfaces, Automation

Market: The Global Delta-sigma Modulator Market size is expected to grow from USD 1.57 billion in 2022 to USD 3.24 billion by 2033, at a CAGR of 7.5% from 2023 to 2033.

Technology

The technology disclosed is a **Delta-Sigma Modulator with Noise Attenuating Feedback Filters**, designed to achieve high-performance analog-to-digital conversion with a focus on enhancing the **Signal-to-Noise Ratio (SNR)** & **Signal-to-Noise & Distortion Ratio (SNDR)**.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/

FIG 1A shows a continuous time $\Delta\Sigma$ modulator with a feedback FIR DAC; **FIG 1B** is a graph showing Power Spectral density **PSD** for **FIG 1A**.

FIG 1B

- Emphasize real-world applications for precision.
- Specify the benefits of superior SNR/SNDR.
- Shows applications where low power is critical.
- Explain how modulator get **280 µW efficiency**.
- Versatile & Achieves <10 Hz 1/f noise corner.
- Modulator is made specifically to meet the industrial need. It explains the contribution of chopping frequency & FIR DAC in optimization.
- **Cost-efficient** in comparison to alternatives. Key design elements contributing to **economy**.
- Modulator addresses environment challenges.
- Provides a practical example of **improved performance**. Shows the impact of **chopping frequency on power consumption**.
- Explains the contribution of spectral nulls in noise reduction.
- Offer studies showing flexibility benefits, Helps in strengthening design flexibility effectively.

Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719

Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

ADRAS

Indian Institute of Technology Madras

Technology Disclosure

The disclosed patent involves technologies related to delta sigma modulation, specifically focusing on a Mbit delta sigma modulator with noise attenuating feedback filters. The key technologies disclosed include:

Delta Sigma Modulation (ΔΣΜ):	The core technology revolves around delta sigma modulation, a method for high- resolution analog-to-digital conversion.
Integrator Design:	Design & implementation of integrators, which are crucial components in delta sigma modulators. Integrators generate an integrated signal undergoes further processing.
Loop Filter Configuration:	The loop filter, comprising a cascade of integrators, is an essential part of the delta sigma modulator. The configuration of the loop filter significantly impacts the overall performance of the modulator.
Analog-to-Digital Converter (ADC):	The M-bit ADC is employed to convert the filtered analog signal to a digital signal. It may cover aspects of ADC design and its integration into the modulator.
Feedback Filters:	It introduces noise attenuating feedback filters, specifically FIR filters, in feedback path. These filters play a crucial role in shaping the quantization noise spectrum.
Digital-to-Analog Converter (DAC):	The Q-bit DAC is utilized to convert the filtered digital signal into a negative feedback analog signal. The characteristics of the DAC are likely to be relevant.
Chopping Technique:	Uses chopping at a specific frequency (fchp), contributing to the modulation process.
Spectral Nulls:	The technology involves the introduction of spectral nulls at multiples of $2^{(fs/N)}$, where N is greater than 2, to enhance the signal-to-noise characteristics.
FIR Filter Technology:	The FIR filter, with a specific number of taps (L-taps), is employed in the feedback path. Design and characteristics of this filter are disclosed.
Technology Integration:	The patent may cover how these technologies are integrated into a cohesive system to achieve the desired noise reduction and signal fidelity.

TRL (Technology Readiness Level)

TRL - 4, Experimentally validated in lab.

Research Lab

Prof. Shanthi Pavan, Dept. of Electrical Engg.

Intellectual Property

IITM IDF Number: 1317 | Patent Grant Number: 390642 | PCT Number: PCT/IN2016/050291

Method for Generating an M-bit Digital Signal

- 1. Provide an Analog Input Signal
- 2. Generate an Integrated Signal in an Input Path
- 3. Filter Integrated Signal To Generate A Filtered Analog Signal
- 4. Convert The Filtered Analog Signal To A M-bit Digital Signal
- 5. Generate A Filtered Digital Signal
- 6. Convert The Filtered Digital Signal To A Negative Feedback Analog Signal

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719