

IIT MADRAS Technology Transfer Office **TTO IPM Cell**

Industrial Consultancy & Sponsored Research (IC&SR)

Method for Direct Quantification of Nucleic Acids in Real Time gPCR

ITM Technology Available for Licensing

Problem Statement

Indian Institute of Technology Madras

- Currently quantitative PCR (qPCR) is a robust technique, widely used in biological research for studying mRNA expression, DNA copy number, allele variations etc. It has revolutionized diagnostics, offering fast. sensitive and specific detection of diseases: Dengue, Influenza A & B, Zika etc.
- The **gPCR** uses two basic chemistries for quantification of amplicons of which one is cost effective but have lower specificity and the other involves fluorescent probes (FP) that use sequence-specific oligonucleotides making it expensive & successfully prevent nonspecific amplification of the target.
- Hence, there is an **urgent need** of the present invention that discloses the method to **develop** an economically feasible sequence specific probe for use in qPCR for DNA amplification.

Technology Category/ Market

Biotechnology & Genetic Engineering Industry: Molecular Biology, Biomedical Engg. Application: Diagnostic, Life science Research Market: The Global gPCR Instruments Market value is expected to grow from USD 898.98 million in 2021 to USD 1,394.75 million in 2028 at 3.4% CAGR from 2021 to 2028.

Technology

The present patent technology aims to disclose a method for quantifying nucleic acids using an Aptamer-based qPCR (Apt-qPCR) probe in real-time PCR.

This method appears to involve utilizing a light-up dye-aptamer system, where the fluorescence increases significantly when the dye binds to its specific aptamer.

TRL (Technology Readiness Level)

TRL 3, Experimentally validated in lab.

Intellectual Property

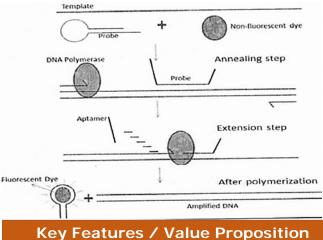
IITM IDF No: 1619 | IP No.: 393411 (Granted) PCT No.: PCT/IN2018/000054 US Application No. 16/766,205

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Method


The method for direct quantification of nucleic acids in real-time qPCR, comprises:

using a simple and shorter Aptamer-based gPCR (AptqPCR) probe for quantification in real-time PCR wherein the probe uses a light-up dye-aptamer system in which the dye shows negligible fluorescence in the free state and its fluorescence increases manifold when it binds to its specific aptamer;

placing the aptamer 5' upstream of one of the primers wherein the primer initially in pre-annealed form shows fluorescence as aptamer is free and singlestranded & can bind to dye;

performing annealing and extension step to make the aptamer double-stranded & thereby loose its 3D structure to form a double helix wherein the double helix is not specific for the dye and do not bind, therefore reducing fluorescence of the solution corresponding to each cycle of the PCR reaction.

FIG. 1 illustrates a schematic representation of mechanism of action of quantification of nucleic acids using label free endonuclease based probes.

This technology presents an approachable, precise, and cost-effective method for quantifying DNA amplification in real-time PCR, offering benefits across user, technical, & industrial perspectives.

Research Lab

Prof. Guhan Jayaraman Department of Biotechnology

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719