

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Method for Fabricating Microfluidic Devices on Porous Substrates ITM Technology Available for Licensing

Problem Statement

Indian Institute of Technology Madras

- Current microfluidic device fabrication methods are complex, require specialized equipment, and use costly chemicals, making them unsuitable for cost-effective mass production.
- These methods, including wax printing, struggle achieve precise hydrophobic-hydrophilic to boundaries, leading to poor device resolution.
- Specialized materials, harsh chemicals, and printer modifications in existing techniques hinder their widespread adoption, particularly in resourceconstrained settings.
- Hence, an accessible, low-cost, user-friendly fabrication method is needed that allows rapid prototyping & mass production, catering to diverse settings, including resource-constrained regions & home healthcare applications.
- The present disclosed patent is needed that addresses above mentioned issues by providing a Method for Fabricating Microfluidic Devices on Porous Substrates.

Technology Category/ Market

Categories: Chemistry & Chemical Analysis Biotechnology & Genetic Engineering

Biotechnology, Healthcare and Medical Industry: Devices, Analytical Chemistry, R&D

Applications: DNA analysis, protein assays, cell sorting, drug discovery, fluid manipulation, chemical analysis, point-of-care diagnostics, disease detection, monitoring health parameters

Market: The Microfluidics Market size is expected to grow from \$ 28.38 B in 2023 to \$ 56.57 B by 2028, at 14.79% CAGR during the forecast period (2023-2028).

Intellectual Property

IITM IDF Ref. 1772 Application No. 201841039420 PCT No. PCT/IN2019/050767

TRL (Technology Readiness Level)

TRL- 3, Proof of Concept & validated in Lab

Research Lab

Prof. Pushpavanam S & Prof. Renganathan T

Department of Chemical Engineering

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Technology

- disclosure relates • The present patent to Fabricating Microfluidic Devices (flow control devices) on porous, hydrophilic substrates, especially for lab-on-a-chip and lateral flow devices.
- To see the device's operation, light-colored toner encloses hydrophilic areas. This process do not affect fluid flow within microfluidic network.
- The method involves manual or automatic application of hydrophobic toner using laser printing. Multiple microfluidic devices can be stacked to make a 3D structure.

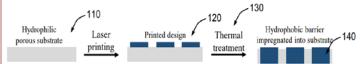


Figure 1 shows the steps for making microfluidic devices on porous substrates using laser printing technology.

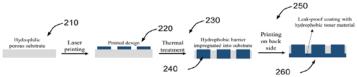


Figure 2 depicts the steps for creating sealed and leakproof microfluidic devices on porous substrates using laser printer technology.

101	403 401 Temer	401 Thermal	405 406407	Additional Inner	401 408	
	402	404	109 41	Mild throad trainer		
Cross-section view	Appetition	401 Themal : 405		420 Element treater or additional to centra		
401 Substrate	Patterned sub	strate 415 Finish	ed device 420	/	430 Enclosed device 450	

FIG. 3 shows step by step procedure for fabrication of enclosed/encapsulated microfluidic device.

Key Features / Value Proposition

<u>*User Perspective:</u>

• This method simplifies microfluidic device fabrication & allows for customized designs.

* Technical Perspective:

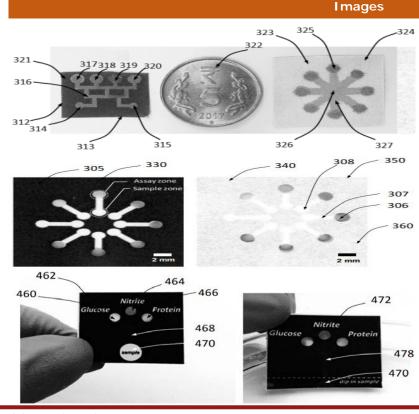
• It offers precise patterning using laser printing and works on various substrates.

Industrial Perspective:

• It is cost-effective, ensures quality, and rapid prototyping enables for diverse applications, giving a competitive edge.

> Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719



Industrial Consultancy & Sponsored Research (IC&SR)

Method for Fabricating Microfluidic Devices on Porous Substrates ITM Technology Available for Licensing

The Method for Fabricating Microfluidic Devices on Porous Substrates comprises following steps:

FIG. 4 displays 2 microfluidic devices:

- a concentration gradient generator made from tissue paper and
- a multiplexed microfluidic device with layered dyes on polyester-cellulose task wipes.

FIG. 5 is an illustration of a microfluidic paper-based analytical device (µPAD) for detecting various analytes.

- It includes front & back surfaces with different zones for conducting tests and introducing samples.
- The assay zone is coated with reagents that change color when analytes are present.

FIG. 6 shows an illustrative microfluidic paper-based analytical device (µPAD) for the detection of various analytes For example but not limiting to: glucose, nitrite and protein.

CONTACT US Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719