

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

SODIUM-ION CONDUCTING SOLID ELECTROLYTE MEMBRANE AND **BATTERY THEREOF**

IITM Technology Available for Licensing

PROBLEM STATEMENT

Indian Institute of Technology Madras

- In the Present era, both the Electric Vehicle (EV) & renewable energy sectors are heavily affected on the safety issues due to the use of Li-ion and Na- ion batteries.
- The problem can be resolved by using solid electrolyte film in such batteries.
- There are a few prior art solutions disclosed for Na-ion battery, however, could not resolve the issues related to poor mechanical stability, lower ionic conductive issues.
- Hence, there is a need to address said issues in efficient matter.

INTELLECTUAL PROPERTY

IITM IDF Ref. 2309; IN Patent No:414125

TECHNOLOGY CATEGORY/ MARKET

Technology: Solid Electrolyte Film ;

Industry & Application: Automobile & Transportation, ;

Market: The global Solid Electrolyte Film market is projected to grow at a CAGR of 15% during 2024-2030.

TRL (TECHNOLOGY READINESS LEVEL)

TRL-4, Proof of Concept ready, tested in lab.

TECHNOLOGY

- The present invention describes a room temperature rechargeable sodium-sulphur **battery** configured with a novel **solid** electrolyte film.
- The battery includes **an anode** comprising sodium metal, a solid electrolyte film comprising sintered $Na_3Zr_2Si_2PO_{12}(NZSP)$ infiltrated with poly(vinylidenefluoride-cohexafluoropropylene) (PVDF-HFP) polymer.
- The polymer comprises 12-20% of the weight of the film.

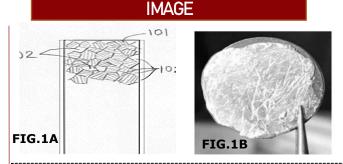


FIG.1A illustrates a schematic representation of NZSP solid electrolyte film; FIG.1B illustrates image of fresh sodium metal.

- The polymer is configured to **absorb** a solution 1.5M NaClO4 of in tetraethylene glycol dimethyl ether (TEGDME) to produce a gel conductive of Na+ ions, the electrolyte film is placed in contact with the anode, the solid electrolyte film has a ionic conductivity of ~**0.4 mS/cm**².
- The battery further includes a cathode, said cathode comprises of carbon in contact with a catholyte prepared by dissolving stoichiometric amounts of sodium sulfide (Na2S) & sulpher in 1.5M NaClO4/TEGDME.
- The **sulphur** content is configured to be 0.1 mg µL-1 or lower;
- The sodium sulphide battery further includes a current collector, coated with 95% acetylene black & 5% **PVDF-HFP** on a carbon fiber fabric laminated on the NSZP electrolyte film configured to enhance interfacial contact cathode & the between electrolyte.
- Further, a method of making a solid electrolyte film for sodium ion batteries is disclosed in Fig. 2.

RESEARCH LAB

Prof. Ramaprabhu S, Dept. of Physics

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

TECHNOLOGY

Indian Institute of Technology Madras

 Said method comprising following steps : 1st step states that synthesizing Na₃Zr₃Si₃PO₃₃ (NZSP) powder by a sol-gel method comprising formation of a sol & a gel;

2nd states step that dispersing the Na₃Zr₂Si₂PO₁₂(NZSP) powder in water with 5wt% polyvinyl alcohol to form a NZSP slurry; 3rd step states that tape casting the NZSP slurry over a sacrificial layer on a carbon fiber fabric substrate to form a NZSP sheet:

4th step states that heating the NZSP sheet to about 600°C to separate the sheet from the substrate;

5th step states that sintering the sheet at about 1000°C; & finally, infiltrating a sodium ion conducting polymer on to the sheet to **obtain** the polymer infiltrated solid electrolyte film.

KEY FEATURES / VALUE PROPOSITION

* Technical Perspective:

- The Sodium sulphide battery includes a current collector, coated with 95% acetylene black & 5% PVDF-HFP on a carbon fiber fabric laminated on the NSZP electrolyte film configured to enhance interfacial **contact** between cathode & the electrolyte, thereby ionic conductivity increases.
- The infiltration of the polymer into the pores of the NZSP sheet provides mechanical stability, enhances ionic conductivity & reduces surface contact resistance of the solid electrolyte.
- The solid electrolyte has a thickness of 0.25 mm or less & ionic conductivity 0.4 mScm⁻² or more.

* Industrial Perspective:

- The solid electrolyte film finds many application, used as carbon fiber cloth, gel electrolyte & etc.
- The process of making a solid electrolyte film is cost-effective, safe, required less energy for manufacturing sodium-sulphur battery applicable in India & globally.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IMAGE

Synthesize NZSP powders by a sol-gel method

Disperse the NZSP powder in DI water with 5wt% of polyvinyl alcohol to form a NZSP

Tape caste the NZSP slurry on a carbon fiber coated with a sacrificial template to form a NZSP sheet

Heat the NZSP sheet to about 600°C for 4 hours to separate the sheet from the substrate

Sinter the sheet to about 1000°C for 12 hours

Infiltrate a polymer into the sheet by coating a sodium conducting polymer to obtain polymerinfiltrated NZSP tape

Roll-press the sheet to required thickness

FIG.2 illustrating a flow chart of method of making a solid electrolyte film for sodium ion batteries.

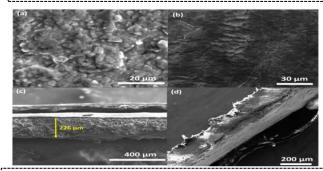


FIG.3 illustrating the X-ray diffraction pattern of polymer solid electrolyte film.

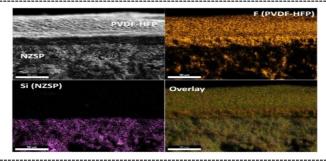


FIG.3 illustrating SEM images and elemental mapping of the solid electrolyte & cross section of NSZP/PVDF-HFP interface.