

Technology Transfer Office

Industrial Consultancy & Sponsored Research (IC&SR)

IIT MADRAS

Indian Institute of Technology Madras

Process For Production Of High Molecular Weight Hyaluronan In A Recombinant Lactococcus Lactis Using Acetate Co-utilization Fed-batch Strategy

ITM Technology Available for Licensing

Problem Statement	Problem Statement
 Current methods for hyaluronic acid (HA) production suffer from limitations like lower molecular weights, hindering effectiveness in biomedical applications. 	The invention introduces a process for producing hyaluronic acid (HA) with a consistently high molecular weight (3.4 MDa) through anaerobic microbial fermentation . The process comprises:
• Existing metabolic engineering approaches focus on enzyme-coding genes but often overlook crucial cofactors , impacting HA production in recombinant strains like L. lactis .	 Utilization of a genetically engineered strain of Lactococcus lactis, named MKG6, expressing key genes from Streptococcus zooepidemicus for enhanced HA biosynthesis.
 Traditional methods and past engineering efforts left an unmet need for higher molecular weight HA demand in medical applications. Utilization of cost-effective acetate in HA 	• Strategically manipulating metabolic pathways (FIG 2) and introduces acetate co- utilization to optimize cofactors like acetyl-CoA, crucial for HA production.
 production faces challenges, there is a critical gap in exploring cofactor engineering strategies to enhance HA production and achieve greater stability for biomedical uses. Hence, there lies a need for enhancing MWHA production, using process strategies, especially with acetate supplementation and co-utilization. 	 Incorporating batch acetate pulse feed, batch process with acetate and glucose pulse feed, constant fed-batch, and pH feedback fed-batch strategies for controlled & sustained HA production. FIG 1 illustrates Thermo-gravimetric analysis of Hypluropia acid
• The instant invention discloses a process for producing higher MWHA (3.4 MDa) with high yield by anaerobic microbial fermentation with process control parameters.	of Hyaluronic acid. $\rightarrow +FB-1x-Ac \rightarrow FB-1x \rightarrow -FB-2x-Ac$ 3.5
Technology Category/ Market Biotechnology & Genetic Engineering	(eq.3.0 (b)) Hg 2.5
Industry: Pharmaceuticals, Biomedical Products Applications : Advanced Materials, Food & Drugs, Medical & Surgical, Medical-grade hyaluronic acid (HA) for visco-supplementation in osteoarthritis treatment, High MWHA for enhanced stability in eye surgeries, HA in wound healing applications, HA for anti-cancer drug delivery, Cosmetic applications utilizing low molecular weight HA. Market: The Global Hyaluronic Acid Market was	U U U U U U U U U U U U U U
estimated at USD 1.1 Bn in 2021, is expected to	Intellectual Property
8% CAGR from 2022 to 2030.	IITM IDF No.: 1862 IP No.: 412658 (Granted) PCT Application No. PCT/IN2020/050447

Research Lab

Prof. Guhan Jayaraman Department of Biotechnology

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719

TRL (Technology Readiness Level)

TRL-4: Validated in Laboratory

IIT MADRAS Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

Figure 2: Hyaluronic Acid Biosynthetic Pathway in L. lactis

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719