

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Multi-phase Low Dropout Voltage Regulator

IITM Technology Available for Licensing

Problem Statement

- As smartphones and tablets become more feature-rich, they require more power supplies. These power supplies are typically regulated by either linear low-dropout (LDO) regulators or switching DC-DC converters.
- While switching converters are efficient for high power, LDOs are more cost-effective for low power applications.
- The challenge is to make LDOs more efficient & compact, especially in small devices like mobile phones.
- Traditional LDO designs require external components like output capacitors, making them less space-efficient. Digital LDOs have been used but come with accuracy and performance trade-offs.
- · Hence, New solutions are needed to create LDOs that are smaller, more efficient, and adaptable for various power needs in battery-powered devices. The present discloses а Multi-phase **Dropout Voltage Regulator** that address above mentioned issues.

Technology Category/ Market

Categories: **Electronics** Circuits Internet of Things (IoT)

Industry: semiconductor electronics and industry, Industrial power management

Applications: improving power efficiency and voltage stability in consumer electronics, telecommunications, automotive. industrial industries equipment, and various other requiring precise power management, having a wide-ranging use cases from portable devices to renewable energy systems.

Market: The global low dropout voltage regulators (LDO) market is projected to grow from USD 1.02 B in 2017 to USD 2.06 B by 2030, at 7.5% CAGR from 2017 to 2030.

Technology

The instant patent invention discloses a multi-(LDO) low dropout phase regulator system and method, better power management and longer battery life. It uses multiple phases, feed-forward master-slave compensation, and designed to efficiently regulate & stabilize voltage in electronic devices and system.

The method adjusts phases based on load conditions, ensuring stable voltage and better performance. Refer FIG 1, 2 and 3.

FIG. 1 shows a circuit diagram of slave LDO.

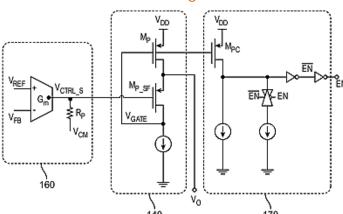
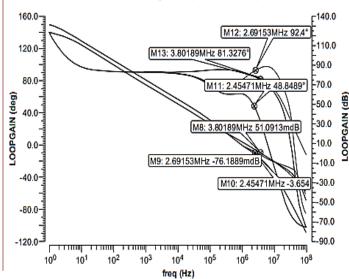



FIG. 2 shows stability response of proposed LDO.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras **IITM TTO Website:**

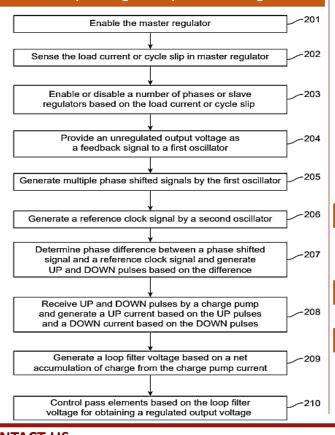
https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)


Multi-phase Low Dropout Voltage Regulator

IITM Technology Available for Licensing

The multi-phases voltage regulator device comprises:

- An output stage that adjusts voltage based on load current.
- A feedback stage with oscillators for precise voltage control and a compensating unit.
- A regulating stage that manages phases based on load conditions, ensuring stable voltage.
- ·Each phase has a phase frequency detector and charge pump for accuracy.
- A loop filter and pass elements maintain a regulated output voltage.
- In this device, the compensating unit can use trans-conductance elements to control the output voltage.

Method of operating multi-phase LDO regulator

Each slave LDO is designed to handle load current up to 1mA Enabled Increasing Load Current 3 Decreasing Load Current No. of Slave LDOs Fine load regulation is controlled by the master LDO FIG. 3 shows the no. of slave Master LDO can handle load transient of 0 ↔ 5mA/100ns LDOs enabled Only Master LDO is Enabled with respect to for Load Current <1mA load current. 3mA Load Current

Key Features / Value Proposition

* User Perspective:

Ensures stable power for devices, reducing voltage-related issues. Ιt saves power, prolonging battery life and lowering energy costs. It Reacts quickly to power changes, improving performance.

Technical Perspective:

- •Multiple Phases: Manages load changes effectively, ensuring voltage stability.
- Precise Control: Advanced compensation for accurate voltage regulation.
- •Noise Resistance: Minimizes the impact of external voltage variations.

* Industrial Perspective:

•Fits in various industries, maintaining precise power control, having Balances efficiency & affordability, helping promote sustainability in electronics.

Intellectual Property

IITM IDF Ref. 1696; Patent No. 383434;

PCT No.: PCT/IN2019/050650

TRL (Technology Readiness Level)

TRL- 4, Validated in Lab

Research Lab

Prof. Qadeer Ahmad Khan

Department of Electrical Engineering

Prof. Saurabh Saxena

Department of Electrical Engineering

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719