

Industrial Consultancy & Sponsored Research (IC&SR)

CLOSED LOOP ACTIVE GATE DRIVER UNIT USING HIGH BANDWIDTH CONTROLLED CURRENT SOURCE WITH DYNAMIC GATE VOLTAGE CLAMPING **IITM Technology Available for Licensing**

Problem Statement

Indian Institute of Technology Madras

- The introduction of SiC-MOSFETs demands a suitable gate driver to manage their fast switching times and prevent voltage and current spikes, which can stress the MOSFET and lead to EMI issues.
- Conventional drivers often gate relv on increasing gate resistance to mitigate issues, but this compromises the benefits of SiC-MOSFETs by increasing switching times and losses
- There's a need for a noise-immune, highbandwidth analog-based gate driver that can address the specific challenges posed by SiC-MOSFETs, optimizing switching losses, stress on the MOSFET, and EMI/EMC performance.

Intellectual Property

- IITM IDF Ref. 1488
- IN 499369 Patent Granted

Technology Category/ Market

Category- Power Electronics and Semiconductor Devices.

Applications- Renewable Energy Systems, Electric Vehicles (EVs)

Industry - Power Electronics & Automotive

Market - Silicon Carbide Power Semiconductor Market size is estimated at USD 2 billion in 2024. and is expected to reach USD 6.7 billion by 2029, growing at a CAGR of 25.% during the 2024-2029.

TRL (Technology Readiness Level)

TRL - 4: Technology validated in lab scale.

Research Lab

Prof. Kamalesh Hatua. Dept. of Electrical Engineering

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras https://ipm.icsr.in/ipm/

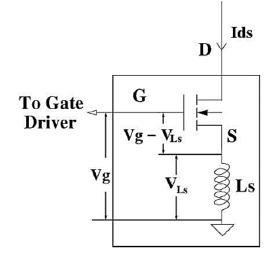


FIG. 1 Schematic represents inherent di/dt feedback due to common source inductance Ls.

Technology

1. Gate Driver Design:

The gate driver for SiC-MOSFETs includes components for generating reference voltages based on gate pulses, load current, and drain current. It also incorporates voltage addition, voltage-to-current conversion, RC differentiation, and current amplification stages.

2. Voltage Clamping Mechanism:

To regulate gate voltage, the gate driver employs positive and negative voltage clamping circuits, with one circuit set at recommended levels and another set higher to offset common source inductance effects.

3. Operational Method:

The method involves generating reference voltages, combining them with feedback signals, converting them into currents, generating a second current through differentiation, and amplifying both currents to supply controlled gate current to the SIC-MOSFET.

> Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IITM TTO Website:

Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

1. SiC-MOSFET Integration

• Addressing the burgeoning demand for gate drivers tailored to the high-speed switching capabilities of Silicon Carbide MOSFETs.

2. Enhanced Efficiency:

• Offering precise control over gate currents to minimize switching losses and optimize performance in voltage source converters.

3. EMI Mitigation:

• Providing solutions to combat electromagnetic interference (EMI) issues associated with fast-switching SiC-MOSFETs, ensuring compliance with regulatory standards.

4. Parallelization Facilitation:

• Enabling easy parallelization of SiC-MOSFETs by leveraging their positive temperature coefficient of ON state drop, enhancing scalability in power electronics applications.

5. Analog Precision, Digital Robustness:

•Offering the robustness of analog control with precise feedback mechanisms, ensuring optimal SiC-MOSFET operation while mitigating noise.

6. Value-added Innovation:

•Delivering a noise-immune, high-bandwidth analog-based gate driver, catering to the evolving needs of the power electronics industry with a focus on efficiency and reliability.

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719