

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

A 3D PRINTED BIOMECHANICAL ELECTROLARYNX DEVICE FOR VOICE REHABILITATION OF LARYNGECTOMEES **IITM Technology Available for Licensing**

Problem Statement

Indian Institute of Technology Madras

- Electrolarynx devices suffer from reduced intelligibility, monotonous speech, and unnatural sound quality. impacting communication effectiveness for laryngectomy patients.
- Current electrolarynx solutions lack fine control over pitch and loudness variation, limiting the user's ability to express emotions and nuances in speech.
- Existing electrolarynx devices often require continuous manual activation, causing inconvenience and restricting the user's mobility and activities.

Intellectual Property

- IITM IDF Ref. 1723
- IN 497157 Patent Granted

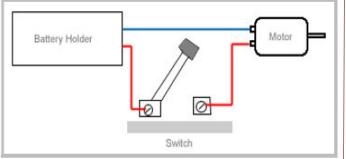


Fig 2. illustrates the simplified diagram of the electrical portion.

Technology Category/ Market

Category - Assistive Devices

Applications - Voice Rehabilitation, Assistive Technology for Speech Impairments. Industry - Medical Devices, Healthcare

Market- Global Voice Restoration Devices Market was valued at US\$ 531 million in 2022 and is estimated to reach US\$ 602 million by 2031, growing at a CAGR of 9.6%.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Cap in touch with skin Hitting piston Button Motor

Fig 1. illustrates the motor with the eccentric plate and piston.

Technology

The present invention relates to a speech aid particularly device and more relates to а biomechanical electrolarynx device for voice rehabilitation of laryngectomees after laryngectomy

> The present invention aims to create a cost-effective, lightweight, and userfriendly electrolarynx system for voice rehabilitation of laryngectomy patients.

It features a mechanical electrolarynx device comprising a transducer powered by an electric motor, converting electrical energy into mechanical vibrations to stimulate the patient's vocal cords.

patient's throat, enabling speech production

TRL (Technology Readiness Level)

TRL - 4: Technology validated in lab scale.

Research Lab

Prof. Boby George, Dept. of Electrical Engineering

> Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IIT MADRAS Technology Transfer Office Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

1. Cost Efficiency: :

 Offering a cost-effective solution for rehabilitation voice postlaryngectomy, reducing financial burden on patients.

2. Lightweight Design:

•Providing a portable and ergonomic electrolarynx system, enhancing user comfort and mobility.

3. User-Friendly Interface:

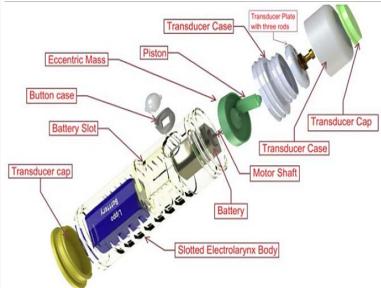
 Simplifying operation and maintenance for laryngectomy patients, ensuring ease of use and accessibility.

4. Low Power Consumption:

 Maximizing battery life with efficient minimizing utilization, energy downtime for recharging.

5. Enhanced Speech Quality:

 Improving speech intelligibility and naturalness through mechanical vibration technology, promoting effective communication.


6. Customized Transducer:

 Tailoring vibration patterns to stimulate vocal cords, optimizing production with minimal speech effort from users.

TTO - IPM Cell

Fig 3. Shows the views of triangular transducer plate with the piston.

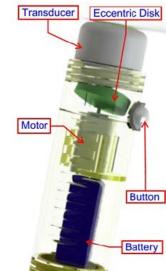


Fig 5. illustrates the inner transparent views of the present invention.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR. IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719