

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Titania-Silica Coating for (i) Protection of Metal Surfaces and (ii) **Ophthalmic Coating Applications IITM Technology Available for Licensing**

PROBLEM STATEMENT

Indian Institute of Technology Madras

- Protection of metal surfaces, particularly the shine of the optical silver, against environment is a challenge. Daily usage of silver articles (mainly, the cutlery, crockery and the tableware) needs special protection against mechanical abrasion. The coatings technology imposes additional challenge of complex shapes of the silver / metal articles.
- When high refractive index ophthalmic lenses are to be used, one needs an anti-reflection coatings which should have high and uniform (over the entire visible wavelength range) refractive index and abrasive resistance compatible with coatings lens coating technology.
- Hence, there is a need to address the issues.

INTELLECTUAL PROPERTY

IITM IDF Ref. 1744; IN Patent No: 526956

TECHNOLOGY CATEGORY/ MARKET

Technology: Titania-silica Coating;

Industry & Application: Silver Industry, Jewelry, Ophthalmic lenses

Market: The global silica coating market is projected to grow at a CAGR of 9.9% during 2024-2030.

TRL (TECHNOLOGY READINESS LEVEL)

TRL-4, Proof of Concept ready, tested in lab.

TECHNOLOGY

- Present invention describes a method of preparing a coating material which is the mixed metal oxides of Titanium & Silicon prepared at **300K** (Room temperature).
- The solution can be used for anti-tarnish and protective coatings on metal surfaces.

The basic method comprising the following step as illustrated in the smart chart:

Basic Process Flow Diagram

•A metal oxide coating material of Titanium (0.1 molar) & Silicon (0.3 molar) prepared by Soltechnique gel (alcohol based) using dip coating technique which is used as antitarnish (protective) coatings on metal surfaces.

Process

flow

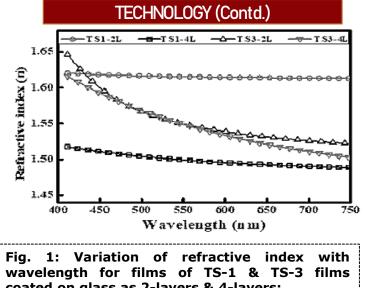
- The titania-silica based coating material can be prepared at room temperature and can be **deposited** on any **complex** shapes and has anti-reflection and mechanical abrasion resistance coating on optical materials.
- Said titania-silica based coating material can be used as protective coating layer for silver metal & silver alloys.

RESEARCH LAB

Prof. SUBRAHMANYAM A Department of Physics

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras


IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IIT MADRAS Technology Transfer Office Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

coated on glass as 2-layers & 4-layers;

- Furthermore, the claimed invention deals with any wavelength of the anti-reflection application & the refractive index of the present invention is a key outcome which is depicted in Fig. 1.
- The titania-silica based coating can be used as anti-reflection and mechanical abrasion resistance coatings on optic lenses including plastic lenses.
- The protective coatings are deposited by **dip** coating technique of desired thickness.
- Table 1 provides the summary of adhesion & hardness results for TiO2, SiO2, & TiO2+SiO2 thin films on glass as 2 and 4 layers.

Test Results					
Sample-glass		Adhesion (N)		Hardness (GPa)	
		2-L	4-L	2-L	4-L
TiO ₂	T-1	3.6	8.2	5.3	7.2
	T-3	4.3	11.3	8.9	9.6
SiO ₂	S-1	*	*	*	*
	S-3	*	9.2	*	*
TiO ₂ -SiO ₂	TS-1	4.0	9.5	7.0	7.3
	TS-3	5.1	12.7	10.9	10.9
		Tab	le-1		

KEY FEATURES / VALUE PROPOSITION

* Technical Perspective:

- The **sol-gel** technique to prepare the titania-silica thin films is easy, costeffective & can be scaled up to the Industrial level.
- The optical properties of the sol-gel derived titania-silica is unique.
- Dip coating technique of desired • thickness.
- For significant enhancement in the coating performance, the coatings can be cured at 200°C for about 20 minutes either in inert atmosphere or

in low vacuum~ 10^{-2} mBar.

- Claimed Sol gel derived titania-silica coating specifically used to **protect** surfaces silver from sulfide & sulfate.
- The preparation parameters including gelling time, pН of the sol, concentrations temperature, sol determine the properties of the sol and consequently, each sol has a specific application.

* Industry Perspective:

Claimed invention has **multi-utility** in a wide range of surface protection of metal/metal alloy & optical coating applications where one needs optical refractive index matching and abrasion resistance.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719