

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

An Improved Process for Synthesis of Ordered Mesoporous Materials with Ionic Liquids and the Product Thereof

IITM Technology Available for Licensing

Problem Statement

- Traditional mesoporous material synthesis method requires large amount of surfactants, leading to environmental concerns.
- Existing techniques does not yield desired structural & textural properties of mesoporous materials, lack scalability and reproducibility, limiting their applications.
- Efficient catalyst with high conversion & selectivity for various chemical reaction is needed.
- This invention discloses an improved process for the synthesis of ordered mesoporous materials with ionic liquid and product thereof.

Technology Category/ Market

Categories: Chemistry & Chemical Analysis | Advance Material & Manufacturing

Industry: Chemical Industry, Materials Science Applications: Mesoporous Materials Synthesis, Catalyst Supports, Adsorbents, Drug Delivery Systems, Separation Technology, Environmental Restoration, Energy Storage, Sensing Technology

Market: The global microporous and mesoporous materials market size was \$ 8602 Mn in 2021, it is expected to touch \$ 18912 Mn by 2031, growing at 8.2% CAGR during forecasted period.

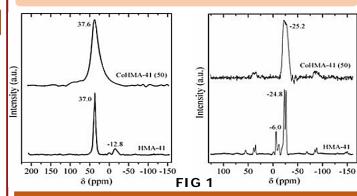
Intellectual Property

IITM IDF No.: 1410 | IP No.: 367463 (Granted)

TRL (Technology Readiness Level)

TRL- 3: Proof of Concept Stage.

Research Lab


Prof. Selvam P, NCCR & Dept of Chemistry

Technology

The instant invention disclosure an improved process for synthesizing different types of mesoporous materials in various methods, including hexagonal and cubic mesoporous silicates, Aluminosilicates, ferrisilicates, aluminophosphates, and cobalt-aluminophosphates.

FIG 1: 27AI MAS-NMR (A) & 31P MAS-NMR (B) spectra of calcined HMA-41 & CoHMA-41(50). Each synthesis method consists of specific step:

- Hexagonal Mesoporous Silicate Synthesis
- Cubic Mesoporous Silicate Synthesis
- Hexagonal Mesoporous Aluminosilicate **Synthesis**
- Hexagonal Mesoporous Ferrisilicate **Synthesis**
- Cubic Mesoporous Aluminosilicate Synthesis
- Hexagonal Mesoporous Aluminophosphates **Synthesis**
- Cobalt-Aluminophosphates Synthesis

Key Features / Value Proposition

:- User perspective:-

- User-friendly process and Environment friendly approach.
- •Customizable method for production of highquality mesoporous materials.

:- Industrial perspective:-

- Scalable process for large-scale production.
- Cost-effective synthesis using affordable reagents and ionic liquid surfactants.
- **Enhanced catalytic properties** with the incorporation of metal ions for efficient chemical processes in the industrial catalysis.

:- Technology perspective:-

- Novel specific hydrothermal treatment method.
- · Control over morphology and pore structure enables tailored material properties.
- Potential for innovation and versatility in various types of mesoporous material synthesis.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras **IITM TTO Website:**

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719