

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

White Light Emission From Single Semiconductor Material Based On **Trivalent Mixed Halide Double Perovskites**

IITM Technology Available for Licensing

Problem Statement

Indian Institute of Technology Madras

- Current methods for making white light devices involve complicate manufacturing process using multiple materials.
- Existing materials have problems like instability and inconsistency, making it hard to create reliable white light devices.
- Many potential materials cannot be made in large amount, limiting mass production use.
- Traditional white light production techniques are not energy-efficient.
- Current lighting methods contribute to pollution without any optimal result production.
- Thus, Developing better white light devices is important for sustainability.
- Hence, the present patent disclosure is needed to improve energy efficiency and enhance reliability of white light emitting devices by providing single semiconductor material capable streamline manufacturing of emitting white light.

Technology Category/ Market

Categories: Electronics & Circuits | Photonics Industry: Semiconductor Materials, Solid-State Lighting (SSL) Technology

Application: White Light Emitting Devices

Market: The global Energy Efficient Lighting market size was valued at \$53.98 B in 2023 and is expected to touch \$93.12 B by 2030 growing at 8.1% CAGR in the forecasted period.

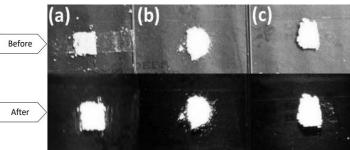
TRL (Technology Readiness Level)

TRL- 4: Validated in Laboratory.

Research Lab

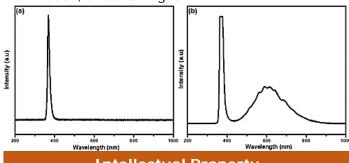
Prof. Aravind Kumar Chandiran Department of Chemical Engineering.

Technology


The instant technology disclosure encompasses a semiconductor material based on trivalent mixed halide double perovskites for white light emission & methods for thin film deposition and device fabrication.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras


IITM TTO Website: https://ipm.icsr.in/ipm/

- The technology involves а semiconductor **compound** based on trivalent mixed halide double specific perovskites, with а formula (Cs2AgM11-xM2xCl6).
- This compound emits white light efficiently, making it suitable for lighting applications.
- The compound can be synthesized using a hydrothermal method, producing powder, single crystal, or thin film forms.
- Thin films of the compound can be **deposited on** conducting or semiconducting substrates using electrophoretic deposition or dip coating methods.
- The compound, when combined with transparent polymers, can be used to fabricate white lightemitting devices, like LEDs, through dip coating processes.

FIG 1 shows photographs of the powder form (a) Cs2AgBi0.20In0.80Cl6, (b) Cs2AgBi0.15In0.85Cl6 (c) Cs2AgBi0.10In0.90Cl6 before and after excitation at a wavelength of 365 nm

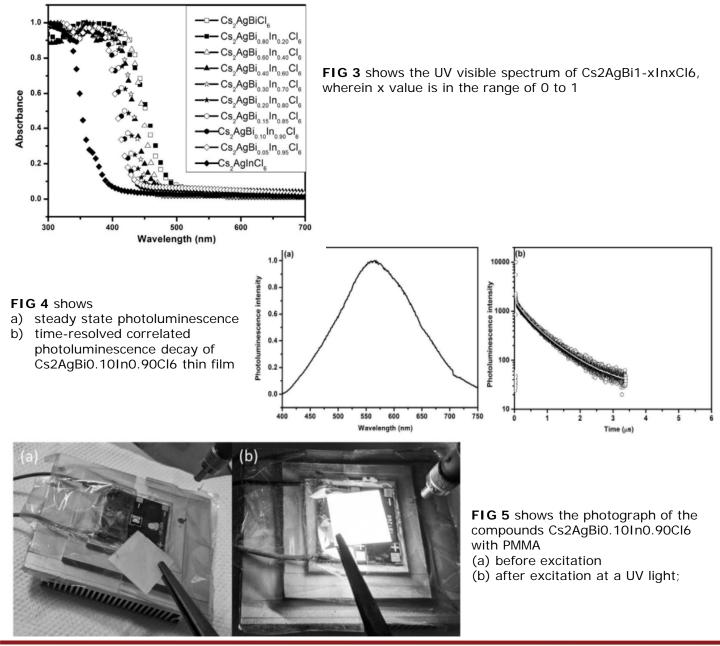
FIG 2 shows (a) spectrum of UV light, (b) emission spectrum of the devices after illumination, under UV light.

Intellectual Property

IITM IDF No.: 1906 | IP No.: 493546 (Granted) IITM IDF No.: 2111 | IP No.: 508581 (Granted) PCT: PCT/IN2020/050951

> Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IIT MADRAS Technology Transfer Office TTO - IPM Cell


Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

• Efficiency: Provides a single semiconductor material for white light emission in simple processes.

Indian Institute of Technology Madras

- Energy Savings: Enhances energy efficiency in lighting applications, reducing electricity consumption.
- Reliability: Offers stable and reproducible performance, improving the longevity of lighting devices.
- Environmental Impact: Reduces environmental footprint through lower energy consumption.
- Cost-efficiency: Reduces manufacturing costs by streamlining processes and utilizing fewer materials, resulting in more affordable white light emitting devices.
- Versatility: Applicable in residential, commercial, industrial, automotive, healthcare, displays, etc.

CONTACT US Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/ Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719