

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

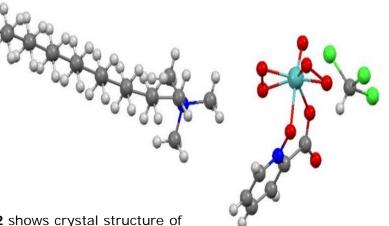
Indian Institute of Technology Madras

A Metallomicellar Catalyst for Sulfoxidation Reactions in Aqueous Medium and **Desulfurization of Model Diesel under Aerobic Conditions**

IITM Technology Available for Licensing Problem Statement Method The method for preparing Current methods for sulfoxide synthesis and cetyltrimethylammonium (CTA) based diesel desulfurization is challenging due to oxomolybdenum Catalyst comprises often production of harmful undesired byfollowing steps: products and incomplete sulfur removal. 1. Dissolving molybdate salt in a water, Current process depend on hazardous reagent, maintain the acidic pH to obtain solution; posing environmental and human health safety risk. 2. Adding hydrogen peroxide to the solution • Scaling up these processes faces hurdles in obtained in step I) to form solution A; finding suitable catalyst & equipment. 3. Adding picolinic acid N-oxide to an · Cost and Accessibility of materials limits aqueous solution of the method adoption. cetyltrimethylammonium (CTA) hydroxide to • Hence, an inventive method for synthesizing obtain a solution B; surfactant-based metallomicellar catalysts 4. Adding a solution A into solution B for sulfoxidation reactions and oxidative followed by maintaining the acidic pH and desulfurization of model diesel under temperature at 0 to 5 °C to obtain aerobic conditions. cetyltrimethylammonium (CTA) based oxomolybdenum catalyst. Technology Category/ Market FIG 3: Represents aqueous phase recyclability of Categories: Chemistry & Chemical Analysis the metallomicellar catalyst Mo1. Industry: Catalyst Manufacturing Application: Sulfoxide Synthesis, (₂0 Diesel Condition B сн. Condition A Desulfurization, Specialty Chemical, Petroleum Environmental Solutions, Refining, Green 1c Chemistry, Catalyst Manufacturing, 3.75 mmol Market: The global specialty chemicals market 100 1a to 1b XXX 1a to 1c size was valued at US \$641 Billion in 2021 and is predicted to reach US \$883 Billion by 80 2028 with 7% CAGR from 2021-2028. TRL (Technology Readiness Level) 60 Yield (%) TRL – 3; Proof of Concept 40 Intellectual Property IITM IDF No.: 2452 | IP No.: 472900 (Granted) 20 Technology The present patent disclosure provides a newly developed surfactant-based molybdenum catalyst $[(C_{19}H_{42}N)[MoO(O_2)_2(C_6H_4NO_3)]$ Catalytic cycle (Formula Mo1), for controlled and **Research Lab** chemoselective oxidation of organic sulfides to their corresponding sulfoxides and sulfones. Prof. Dillip Kumar Chand, Dept. of Chemistry

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras


IITM TTO Website: https://ipm.icsr.in/ipm/ Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

Industrial Consultancy & Sponsored Research (IC&SR)

IT MADRAS

Indian Institute of Technology Madras

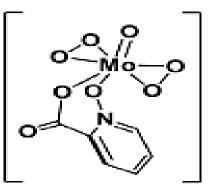


FIG 2 shows crystal structure of metallomicellar complex (C19H42N)[MoO(O2)2(C6H4NO3)]·CHCI3, Mo1·CHCI3 shown in ball and stick model.

Formula Mo1: $[(C_{19}H_{42}N)[MoO(O_2)_2(C_6H_4NO_3)]$

Key Features / Value Proposition

User Perspective:

- The catalyst simplifies sulfoxide and sulfone synthesis, ensuring high efficiency in converting sulfides into valuable products.
- The catalyst's precise control over oxidation, minimizing unwanted by-products.
- Operating in an aqueous medium under oxygen atmosphere, the catalyst eliminates complex conditions and enhances user safety.
- Catalyst can be used as various substrates, including those with sensitive functional groups.

Industrial Perspective:

- The catalyst's scalable synthesis and compatibility with common substrates streamline production and reduce costs.
- Offering a greener alternative to traditional methods, the catalyst aligns with sustainability goals and regulatory standards.
- With high selectivity, the catalyst ensures consistent product quality, minimizing variations in industrial operations.
- Compatible with existing processes, the catalyst seamlessly integrates into industrial settings.

Technical Perspective:

- The catalyst's **unique composition** enables **efficient catalytic activity** and **selectivity**, offering insights into **structure-function relationships**.
- The precise synthesis method ensures **reproducibility and scalability** for industrial production.
- Various analytical techniques provide insights into the catalyst's structure and properties, aiding optimization.
- Applied in oxidative desulfurization of model diesel, the catalyst addresses industrial challenges related to sulfur removal from fuels.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719