

Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

High-Sensitivity Molecularly Imprinted Polymer Based Glucose Sensor IITM Technology Available for Licensing

PROBLEM STATEMENT

- Present need is to develop a glucose diagnostic tool which is pain free, noninvasive, user-friendly, reliable & accurate monitoring of glucose levels. There are various biological fluids other than blood is being explored such as sweat, tears, saliva, urine, & tissue/interstitial fluids.
- To detect glucose in the human sweat requires a powerful sensing technique. As sweat is a complex physiological mixture, the selectivity detection of glucose is a difficult task, due to major drawbacks includes costlier procedures, shelf life & cumbersome immobilization procedures. Hence, there is a need to address the issues.

INTELLECTUAL PROPERTY

IITM IDF Ref. 2534; IN Patent No:473848

TECHNOLOGY CATEGORY/ MARKET

Technology: MIP Based Glucose Sensor; Industry Application: & Bio medical Engineering, Medical Device, Bio-Electronics; Market: The global glucose sensor market is projected to grow at a CAGR of 8.6% during 2024-2032.

TRL (TECHNOLOGY READINESS LEVEL)

TRL-4, Proof of Concept ready, tested in lab.

TECHNOLOGY

- The present invention describes a **molecular** imprinted polymer biosensor device for sensitive detection of glucose from sweat present on skin.
- Said biosensor device comprising a paper substrate, a working electrode, a counter electrode and a reference electrode of carbon formed on the paper substrate, a molecular imprinted polypyrrole polymer sensing portion coated onto the working electrode.

IMAGE

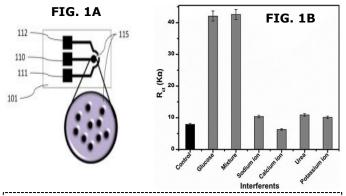


FIG.1A: Illustrate schematic diagram claimed device; Fig. 1B: shows various interferents during sensing of glucose in a common mixture;

- Herein the **polypyrrole** is imprinted for detection of glucose.
- Further, the device is configured for alucose measurement of concentration using electrochemical impedance spectroscopy (EIS).
- Further, the present invention is directed to a method for preparing polypyrrole molecular imprinted polymer (MIP) **sensor** for glucose detection.
- In this instance, the method discloses a few steps including the coating of the sensing portion.
- Coating the sensing portion includes dispersing 1mg synthesized of molecular imprinted polymer (MIP) in 1mL water and coating the sensing portion of the working electrode, followed by drying at 60°C for 30 minutes.

RESEARCH LAB

Prof. Pallab Sinha Mahapatra, Dept. of Mechanical Engineering Prof. Tuhin Subhra Santra, Dept. of Engineering Design

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

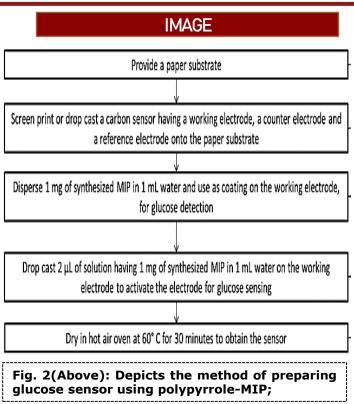
Indian Institute of Technology Madras

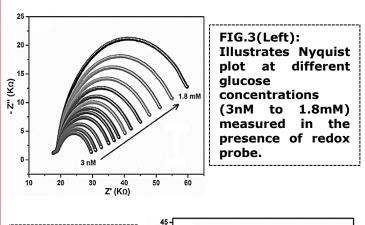
Industrial Consultancy & Sponsored Research (IC&SR)

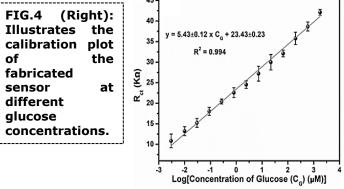
KEY FEATURES / VALUE PROPOSITION

* Technical Perspective:

- The device is configured to have
- a) a linear detection range between 3nM to 1.8mM,
- b) Sensitivity of 2.41KΩ/µm⁻¹/mm⁻² or higher or a detection limit of 4.8nM or lower.
- The **sensor** is **stable** when stored under indoor storage conditions for 80 days or more.
- Further present invention discussed about the method for preparing **polypyrrole** molecular imprinted polymer (MIP) sensor for glucose detection.
- The method for **obtaining the MIP** in **pellet form** comprises repeatedly washing and centrifuging the pellet 3 or more times to remove the template molecule, followed by drying the washed pellet in a hot air oven at 120°C for 12 hours.


* Industrial Perspective:


- The claimed device is advantages such as high selectivity, high sensitivity, high signal to noise ratio, & rapid response time.
- Provides cost-effective compact device.
- Facilitates Pain free, non-invasive, user friendly, reliable & accurate glucose detecting device.


Sample Result

Electrode/Material	Transduction Technique	Linear Detection	LoD	Real Life
		Range		Sample
Paper based carbon SPE/Polypyrrole based	EIS	3 nM to 1.8 mM	4.8 nM	Artificial sweat
MIP (Present Work)				

Table 1: Analytic sensing performance of claimed sensing device;

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719