

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

TUNDISH FOR BETTER INCLUSION SEPARATION

IITM Technology Available for Licensing

Problem Statement

- Existing tundish designs struggle to effectively remove small-sized impurities (<50 µm) from quality impacting its molten steel, processing.
- There is a critical need for a tundish design that efficiently separates smaller impurities (<20 µm) from molten steel, ensuring cleaner steel production and desired material properties.

Technology Category/ Market

Category – Metallurgy/Materials Engineering Applications - Steel Production, Metal Casting, Metallurgical processes, Manufacturing/ Chemical Steel Manufacturing, Metalworking, Industry -Extraction / Mining

Market - The global Steel market size was valued at USD 1159247.89 million in 2022 and is expected to expand at a CAGR of 3.3% during the forecast period, reaching USD 1408401.06 million by 2028

Intellectual Property

- IITM IDF Ref. 1592
- IN 474018 (Patent Granted)

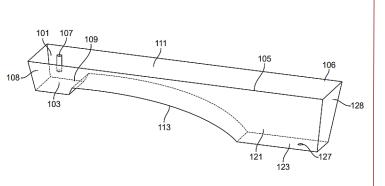


FIG. 1A depicts the isometric view of the improved tundish desian.

Technology

Enhanced Inclusion Separation:

The invention focuses on improving the separation of non-metallic inclusions (NMIs) from molten steel, particularly targeting smaller impurities (<50 µm) for better steel quality.

Unique Tundish Design:

It introduces a novel tundish design featuring a recirculating region, a contoured neck region, and a reservoir region, optimizing the flow dynamics to achieve superior inclusion separation.

Gradual Flow Expansion:

The **contoured bottom wall** of the neck region facilitates a gradual expansion of molten metal, reducing velocity and enhancing the effectiveness of inclusion removal.

Application Versatility:

The design can be tailored for various steel production configurations, offering adaptability for single or multiple strands, thereby accommodating diverse industrial needs.

Significant Efficiency Gains:

Compared to traditional tundish designs, this invention promises a substantial increase inclusion separation efficiency, contributing to the production of cleaner and higher-quality steel.

CONTACT US

100~

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras **IITM TTO Website:**

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

User Perspective:

- > Enhanced steel quality through superior inclusion removal.
- > Increased operational efficiency and cost-effectiveness for steel manufacturers.

Technical Perspective:

- Advanced flow dynamics for superior inclusion separation.
- Adaptable design for seamless integration and enhanced process efficiency.

Image

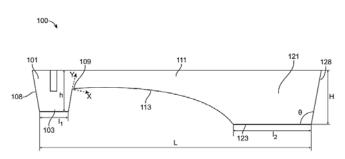


FIG. 1B illustrates the cross-sectional view of the improved tundish design.

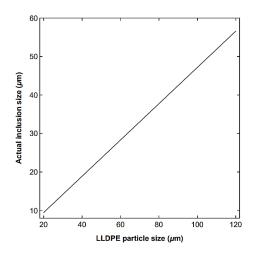


FIG 2 Plot comparing tested LLDPE particle size to actual inclusion sizes in a full-scale tundish.

Research Lab

Prof. Sabita SarkarDept. of Metallurgical and Materials Engineering

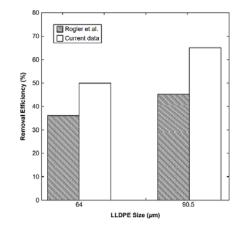


FIG. 3 Compares separation efficiency of improved tundish to traditional shape for 64 and 90.5-micron LLDPE particles.

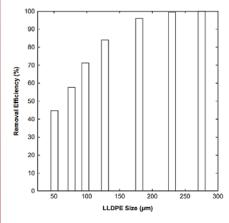


FIG. 4 depicts separation efficiency of linear low-density polyethylene (LLDPE) particles of various sizes in the improved tundish.

TRL (Technology Readiness Level)

TRL- 4, Technology validated in Lab scale

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719