

Industrial Consultancy & Sponsored Research (IC&SR)

LANTHANUM DOPING OF CERIA ABRASIVE TO OBTAIN ROBUST CMP POLISH RATES IITM Technology Available for Licensing

Problem Statement

Indian Institute of Technology Madras

- To achieve planarization and polishing of wafer surfaces. Chemical Mechanical Polishing (CMP) is essential technique an in semiconductor production.
- Traditional CMP processes using abrasive limitations, slurries have including impurities, defects. and difficulty controlling material removal rates.
- The development of next-generation nanoparticle abrasives holds promise for improving CMP performance, reducing defects, and achieving greater control over material removal.
- Researchers are exploring using ceria nanoparticles and other advanced abrasives to enhance CMP processes and meet the demands of advanced semiconductor technology.

Intellectual Property

- IITM IDF Ref. 1086
- IN 426681 Patent Granted

Technology Category/ Market

Chemical Mechanical Category-Planarization Process

Applications - Used for the polishing of silicon dioxide and silicon nitride wafers during the production of integrated circuits (ICs).

Industry - Semiconductor Manufacturing.

Global chemical Marketmechanical planarization market size is expected at \$5.82 Bn by 2027 at a growth rate of 7.9%.

TRL (Technology Readiness Level)

TRL - 3, Technology concept formulated.

FIG. 1. Different forms of polishing.

Technology

- •The CMP method involves using a fixed abrasive pad loaded with ceria, which contains less than 1 wt% lanthanum along with additives like L-proline.
- The ceria abrasive can be either nano particles or micro particles, providing flexibility in particle size selection based on process requirements.
- •The ceria is a combination of cerium and oxygen, while the lanthanum present in ceria is in the form of lanthanum oxide.
- •The polishing slurry used in the process has a pH value of 7 and is designed to nonselectively enhance the polish rate of silicon dioxide and silicon nitride.
- •This CMP method offers a controlled and efficient approach for planarization of silicon wafers, especially in semiconductor manufacturing, with the potential for improved performance and reduced defects.

Research Lab

Prof. Ramanathan S. Dept. of Chemical Engineering

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

4

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

IIT MADRAS

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

- 1. Enhanced CMP Performance.
- 2. Nano or micron size abrasive ceria particles can be used.
- 3. Applicable with most of the amino acids as additives.
- 4. Non-Selective Polishing of both oxide and nitride wafers.
- 5. Cost-Efficiency and Productivity.

FIG. 2. The experiments are repeated atleast thrice and the average values along with the standard deviation are reported.

CONTACT US Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/ Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719