

Industrial Consultancy & Sponsored Research (IC&SR)

Die-cast axial compression process for standalone monolithic diffusion layer integrating microporous and gas diffusion layers **IITM Technology Available for Licensing**

Problem Statement

Indian Institute of Technology Madras

- Current methods of coating Micro Porous Layers (MPL) onto Gas Diffusion Layers (GDL) in PEMFCs lack uniformity, leading to issues such as uneven thickness, crack formation, and water accumulation.
- The bilayer system of MPL and GDL results in high material costs, poor control over properties, and water accumulation at interfaces, affecting fuel cell performance.
- There is a need to develop a cost-effective, mechanically stable, and uniformly thick standalone monolithic diffusion layer (SMDL) that combines the functions of MPL and GDL to address these issues.

Intellectual Property

- IITM IDF Ref. 1650
- IN 466746 Patent Granted

TRL (Technology Readiness Level)

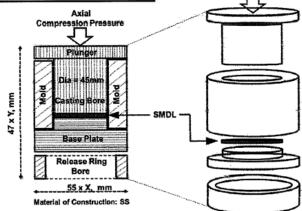
TRL - 4: Technology validated in lab scale.

Technology Category/ Market

Category - Advanced Materials

Applications - Aerospace, Automotive Industry- Energy Storage, Automotive, Industrial

Automation


Market - PEM Fuel Cell Market size valued at USD 3.06 billion in 2023 and is estimated to grow at over 8.3% CAGR from 2024 to 2032.

Research Lab

Prof. Prathap Haridoss, Dept. of Metallurgical and Materials Engineering ROLLING or

FIG. 1. Rolling / Calendaring of a Preform to sheet. Die Cast Axial Compression Mould.

FIG. 2. Die Cast Axial Compression Mould.

Technology

Current methods of coating MPL onto GDL lack uniformity, resulting in uneven thickness and crack formation, leading to water accumulation and reduced fuel cell performance.

//

The bilayer system of MPL and GDL incurs high material costs and lacks control over properties, affecting fuel cell efficiency.

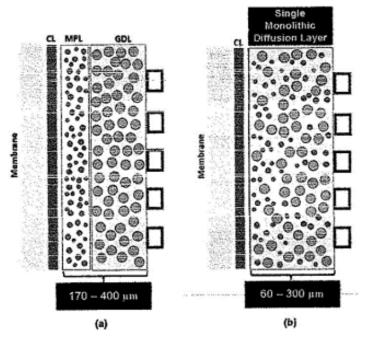
Developing a cost-effective, mechanically and uniformly stable, thick SMDL combining MPL and GDL functions is essential to address these issues and improve fuel cell performance.

CONTACT US

Dr. Dara Ajay, Head-TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/ Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in


Phone: +91-44-2257 9756/ 9719

Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

IIT MADRAS

Indian Institute of Technology Madras

FIG. 3. Schematic of (a) Conventional MPL-GDL Bilayer; (b) SMDL of this Invention.

Key Features / Value Proposition		
1. Uniform Coating Technology:	Revolutionizes PEMFC manufacturing with a process for uniformly coating MPL onto GDL, ensuring consistent thickness and reducing crack formation.	
2. Cost Efficiency:	Drastically reduces material costs by eliminating the need for separate MPL and GDL layers, making fuel cell production more economical.	
3. Enhanced Performance:	Improves fuel cell efficiency and mechanically stable SMDL with conductivity.	
4. Water Management:	Solves water accumulation iss transport properties, preventin maintaining optimal performance.	
CONTACT US Dr. Dara Ajay, Head-TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras	IITM TTO Website: https://ipm.icsr.in/ipm/	Email: <u>smipm-icsr@icsrpis.iitm.ac.in</u> <u>sm-marketing@imail.iitm.ac.in</u> Phone: +91-44-2257 9756/ 9719