

Industrial Consultancy & Sponsored Research (IC&SR)

Two-Dimensional (2D)Material based Fluorescent Optical Fiber Sensor for Partial Discharge Detection in Transformers and Methods **IITM Technology Available for Licensing**

Problem Statement

Indian Institute of Technology Madras

- Existing partial discharge (PD) detection systems based on fluorescent optical fibers have limited sensitivity, particularly for lowmagnitude discharges and early detection.
- Need for Enhanced Efficiency and Sensitivity: There is a lack of prior art addressing the enhancement of efficiency and sensitivity in PD detection systems using fluorescent optical fibers.
- Potential Solution: The introduction of a thin layer of 2D materials as a coating on fluorescent fiber optics potentially could improve the efficiency and sensitivity of PD detection systems.

Intellectual Property

- IITM IDF Ref. 2531
- IN 538500 Patent Granted

TRL (Technology Readiness Level)

TRL - 4: Technology validated in lab scale.

Technology Category/ Market

Category - Power Systems

Applications-Transformer Condition Monitoring, High Voltage Power Systems. Electrical Equipment Manufacturing

Industry- Energy, Power Generation, Industrial Automation, Electrical Equipment Manufacturing

Market - Partial Discharge Monitoring Systems market is expected to reach USD 827.2 Billion by 2030, with a CAGR of 5.4% from 2024 to 2030.

Research Lab

Prof. Shivananju Bannur Nanjunda, Prof. R. Sarathi, Prof. Balaji Srinivasan Dept. of Electrical Engineering

CONTACT US

Dr. Dara Ajay, Head -TTO Technology Transfer Office, IPM Cell- IC&SR. IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

FIG. 2. Illustrates 2D material based fluorescent fiber fabrication.

Technology	
	The 2D material-based coating significantly enhances the sensitivity of the optical fluorescent fiber sensor for detecting partial discharges (PD), providing more than double the sensitivity compared to uncoated fibers.
2	The fabricated sensor demonstrates optical emission spectrum in the UV range, with distinct emission lines at specific wavelengths, allowing precise detection of PD. Additionally, fast Fourier transform analysis reveals clear discharge signals.
3	The PD sensor with the 2D material coating shows substantial improvements in partial discharge inception voltage (PDIV), with enhancements of 34.8% for maximum deviation, 30.8% for surface discharge, and 17.7% for discharge due to particle movement, indicating higher efficiency and sensitivity in PD detection.

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Technology Transfer Office, IPM Cell- IC&SR. IIT Madras

https://ipm.icsr.in/ipm/

Phone: +91-44-2257 9756/ 9719