

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

A CHROMIUM OXYNITRIDE ELECTROCHEMICAL STORAGE DEVICE AND A CHROMIUM OXYNITRIDE NANOPARTICLE ELECTRODE

IITM Technology Available for Licensing

PROBLEMSTATEMENT

- ☐ Researchers are studying metallic nitrides, specifically chromium nitride and chromium oxynitride, due to their electrical, optical, mechanical, and tribological properties.
- ☐ These materials are used in anti-wear and corrosion films due to their high hardness and resistance.
- ☐ Chromium nitride also is used electrochemical energy storage, particularly as a super capacitor.
- ☐ Super capacitors have high capacitance, making them faster to store electricity than batteries.
- ☐ They store charge through two main mechanisms: electrical double layer (EDL) capacitance and pseudo capacitance.
- ☐ Nano-structuring strategies are being explored to enhance electrochemical energy storage and catalytic applications.

TECHNOLOGYCATEGORY MARKET

Technology: Α Chromium Oxynitride Nanoparticle electrode used in supercapacitor. Technologies/ Category: Micro & Nano Chemistry & Chemical Analysis/ Electronics & Circuits.

Industry: Metallurgical/Chemical /Energy. **Application:** Advanced Materials, Clean Energy Market: The global market size of nanoparticles is estimated to grow from USD 5.1 billion in to **USD** 15.1 billion 2023 bv 2035. representing a CAGR of 9.4% during the forecast period 2023-2035.

INIELLECTUAL PROPERTY

IITM IDF Ref. 1948 Patent No: IN 534594

TRL (Technology Readiness Level)

TRL-4, Experimentally validated in Lab;

Research Lab

Prof. Tiju Thomas,

Dept. of Metallurgical and Materials Engineering, IIT Madras.

TECHNOLOGY

- > A Chromium Oxynitride electrochemical device/ storage Chromium Oxynitride nanoparticle electrode consists of a
 - Positive Electrode,
 - Negative Electrode, and
 - Separator, coated with chromium oxynitride nanoparticles charge substrate acting as current collector.
 - Separator comprises an anion

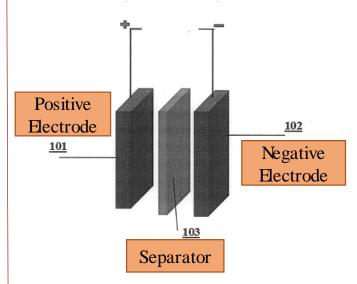


Figure 1 shows the illustration of a supercapacitor fabricated using CrON nanoparticle electrodes.

> The charge substrate is one selected from nickel foam, carbon paper, carbon cloth, stainless steel, glassy carbon, titanium foil copper foil.

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras **IITM TTO Website:**

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

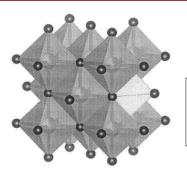


Fig 2 shows a Crystal structure of CrON nanoparticles

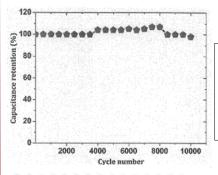


Fig 5 shows a depiction of the cyclic stability and capacitance retention of a coin cell supercapacitor

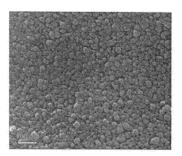


Fig 3 shows a Nanospherical morphology of CrON nanoparticles

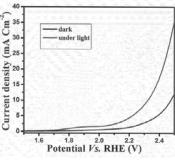


Fig 6 shows a photocurrent measurement of CrON nanoparticles under dark and light illumination conditions for 3h,

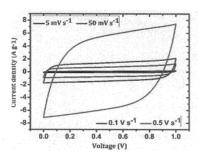


Fig 4 shows a Cyclic Voltammetry

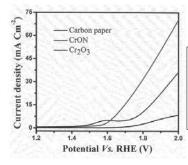


Fig 7 shows a The electrocatalytic response of CrON nanoparticles coated over carbon paper

Key Features / Value Proposition

- > Device is used as a super capacitor with
 - High cyclic stability
 - 10000-15000 cycles
 - Excellent capacitance retention (95-99%.)
- supercapacitor is fabricated structure
 - coin cell supercapacitor of 17-20mm diameter.
- ➤ Maintains 92-98% of specific capacitance even at high current densities exceeding 2 A g-¹.
- > Excellent charge storage capability.

- ▶ It has a specific capacitance ranging from
 - 140-150 Fg-¹ at a scan rate
 5 mV s-¹ and
 - 80-90 F g-1 at a scan rate
 500 mV s-1.
- Generating a photocurrent of 30-40 mA cm⁻¹ in 1M KOH medium Under light illumination of 300W Xenon lamp for a period of 3h.
- ➢ Generating a current of 65-75 mA cm-² at 5 mV s-¹ when dispersed in a suitable medium.

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website:
https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719