

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

A MARINE RISER HAVING A FUNCTIONALLY GRADED MATERIAL (FGM) LAYERS AND A METHOD OF MANUFACTURING THEREOF

IITM Technology Available for Licensing

PROBLEM STATEMENT

- Marine risers are cylindrical conduits used for transporting oil and gas from offshore reservoirs to platforms or vessels.
- > They facilitate drilling, well completion, fuel production, and injection.
- ➤ However, they can suffer from corrosion due to hydrogen sulphide, chlorides, carbon dioxide gases in and environments.
- Marine risers carbonmade from manganese steel can crack due to extreme loads, causing corrosion and leakage.
- Composite materials face delamination, crack formation, premature failure, design and manufacturing challenges due high-pressure, high-temperature conditions, lower D/t ratio, and special treatments.
- > This disclosure aims to overcome these limitations.

TECHNOLOGYCATEGORY MARKET

Technology: Marine Riser

Category: Energy, Extraction and Mining

Industry: Marine Energy Sector, Offshore

Engineering

Application: Oil and gas industrial application Market: The global market size was estimated to reach a valuation of USD 3.8 Billion in the year 2022 With a steady CAGR of 2.2% from 2023 to 2033, this market is expected to reach USD 4.1 Billion by 2023 and USD 4.9 Billion by 2033.

INTELLECTUAL PROPERTY

IITM IDF Ref. 1978 Patent No: IN 490784

TRL (Technology Readiness Level)

TRL-4, Experimentally validated in Lab;

Research Lab

Prof. Srinivasan Chandrasekaran, Dept. of Ocean Engineering...

TECHNOLOGY

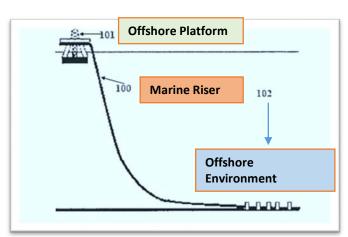


Figure 1 illustrates schematic view of an offshore environment comprising of offshore platform and a marine riser connected

A marine riser having functionally graded material (FGM) layers, comprising:

Core layer

carbon-manganese steel, with a core layer that allows fluid flow

First intermediate layer

 Duplex stainless-steel material, provided concentrically around the core layer

Second intermediate layer

•Nickel material, provided concentrically around the first intermediate layer

Outer layer

•Titanium material provided over the second intermediate layer

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras **IITM TTO Website:**

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

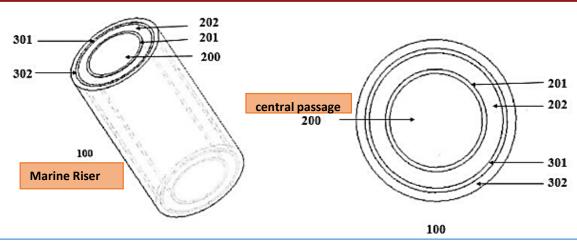


Figure 2 illustrates a marine riser manufactured by Functionally Graded Material-II (FGM-II)

Numerals	Definition
201	Core layer
202	First intermediate layer
301	Second intermediate layer
302	Outer layer

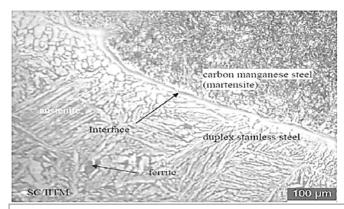


Figure 3 shows the microstructural interface of duplex stainless steel and carbon manganese steel in a marine riser made using FGM at a 100X magnification

Key Features / Value Proposition

- Core layer formed of carbon-manganese steel material comprises a martensite microstructure.
- The First intermediate layer formed of duplex steel material comprises a ferrite and austenite microstructure.
- The Second intermediate layer formed of nickel prevents material interaction between the duplex stainless-steel material of the first intermediate layer and the titanium material of the outer layer Properties of functionally graded material layers
 - Yield Strength of about 513 MPa to 547 Mpa
 - Ultimate Tensile Strength of about 579 MPa to 619 Mpa
 - > Elongation of about 11 %
- Laying operations are performed by Wire Arc Additive Manufacturing (WAAM) technology.
- Corrosion-The outer layer, the first and the second intermediate layers act as corrosion resistant layers of the marine riser.
- Exhibit improved corrosion resistance, mechanical properties and high temperature high pressure resistance under marine conditions.

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/ **Email**: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719