

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

SYNTHESIS OF TOXIC-FREE STAR SHAPED GOLD NANOSTRUCTURES USING MICROFLUIDICS AND ITS USAGE IN INTRACELLULAR DELIVERY ITM Technology Available for Licensing

PROBLEMSTATEMENT

Indian Institute of Technology Madras

- > Anisotropic gold nanoparticles, with near-infrared tunability, are useful in cellular biomedical applications, transfection and targeting and causing cancer cells thermomechanical damage through laser radiation.
- > Gold nanoparticles are created through chemical reduction using reducing agents like trisodium citrate, sodium borohydride, or acetic acid, but controlling kinetics and producing nanostars is challenging.
- Microfluidics technology offers high yields and low dispersion, but it requires large volumes of reagents and time.
- > A method to synthesize toxic-free starshaped gold nanostructures is needed, requiring fewer reagents, reproducibility, cost-effectiveness, and time efficiency.

TECHNOLOGYCATEGORY MARKET

Technology: Toxic-free shaped star gold nanostructures

Category: Micro & Nano Technologies

Industry: Bio-Micro/Nano, **Biomedical** Engineering

Application: Intracellular delivery using photoporation

market Market: The global size of nanomaterials in personalized medicine is expected to increase from \$346.7 billion in 2023 to \$592.0 billion by the end of 2028, with a compound annual growth rate (CAGR) of 11.3% during the forecast period of 2023-2028.

INIELLECIUAL PROPERTY

IITM IDF Ref. 2271, Patent No: IN 526929

TRL (Technology Readiness Level)

TRL-3, Experimental proof of concept;

CONTACT US

Dr. Dara Ajay, Head TTO

Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Research Lab

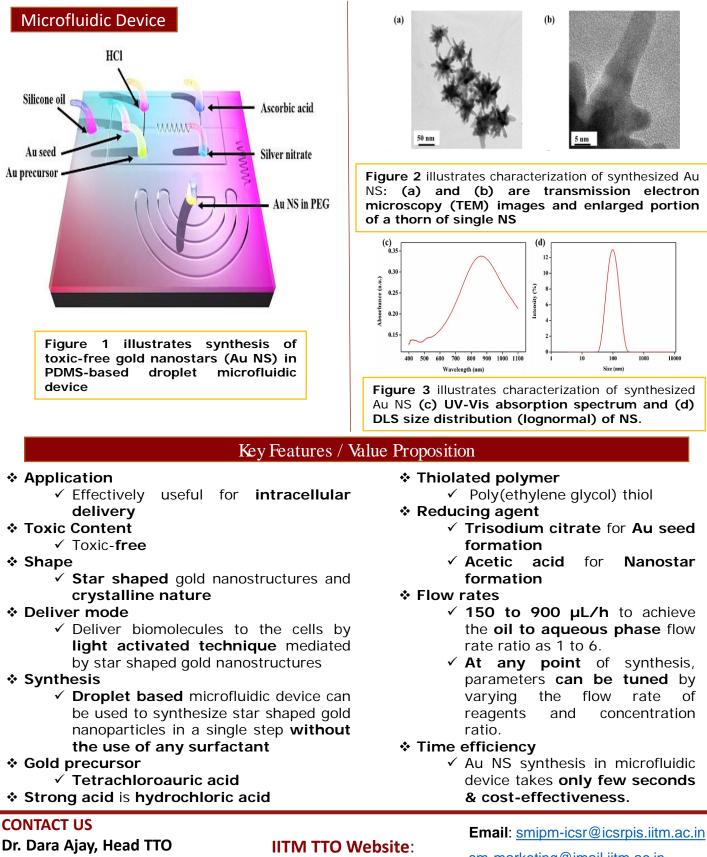
Dr. Tuhin Subhra Santra, Dept. of Engineering Design.

TECHNOLOGY

A method to synthesize toxic-free star shaped gold nanostructures comprising steps of

1	adding a reducing agent into a gold precursor;
2	Diluting the seed solution prepared in step (1);
3	Adding the diluted seed solution prepared in step (2) to a first inlet of droplet microfluidic device;
4	Maintaining a low pH throughout the synthesis by feeding a strong acid through a second inlet.
5	Adding gold precursor through a third inlet;
6	Simultaneously adding ascorbic acid and silver nitrate in the next junction through a fourth and fifth inlet, respectively;
7	Adding silicone oil to the mixed reagents solution and forming aqueous droplets in oil;
8	To halt the growth process , collecting the nanostar solution in PEG solution kept at ice-cold temperature; and
9	Removing excess oil and PEG by multiple centrifugations

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719



Indian Institute of Technology Madras

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

https://ipm.icsr.in/ipm/

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719