

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

SYSTEM AND METHOD FOR PREDICTING BINDING AFFINITY OF SMALL MOLECULES TO RNA TARGETS **IITM Technology Available for Licensing**

Problem Statement

Indian Institute of Technology Madras

- In the existing approaches like Computer-Aided Drug Design (CADD) have primarily been focused on the development of scoring functions or models, which can predict the in vitro activity of any given small molecule against a specific target protein or nucleic acid.
- The technical problem, underlying the present invention, may be regarded as the **absence** of generic quantitative prediction models for predicting binding affinity of **RNA targets** of different RNA families with small molecules.
- invention Hence, said provides suitable solution by addressing the issues efficiently.

Technology Category/Market

Technology: Predicting binding affinity of small molecules to RNA targets;

Industry & Application: Pharmaceutical, Biotechnology, Cellular & Biological Simulation, Drug Discovery & Disease Modelling

Market: The global computational biology market is projected to grow \$31.5Bn by 2031, at a CAGR of 19.5% during the forecast period (2024-31).

Technology

- Present invention provides a system and method for predicting binding affinity of small molecules to Ribo-Nucleic Acid (RNA) targets. (Refer Figs. 1, 2 & 3)
- Said **system** comprises a **memory** & a **processor** wherein the processor is configured to receive an input from a user & predict a binding affinity of the small molecule to the **RNA target** of the sub-type, using a prediction model.
- In the embodiment, the one/more modules may be communicatively coupled to the processor for performing the functions of the binding affinity predicting system, wherein the modules comprises a receiving module, an

RNA feature calculation module, a small molecule feature calculation module, prediction model generating module, а prediction model, an executing module and other modules.

Fig. 1 shown detailed block diagram of a binding affinity predicting system implementing for embodiments

The prediction model generating module is configured to identify a plurality of noncorrelated features from the plurality of RNA sequence-based features & the plurality of small molecule features.

Intellectual Property

IITM IDF Ref. 2554; Patent Application No. 202341049440 TRL (Technology Readiness Level)

TRL-4, Proof of Concept ready, tested and validated in Laboratory

Research Lab

Prof. Michael Gromiha M; Dept. of Biotechnology

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/ Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719

Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

Technology (Contd.)

· A method for predicting binding affinity of small molecules to RNA targets, comprising a few steps shown in flow chart depicted in Fig. 2 herein:

Imades RSAPred: RNA-Small molecule binding Affinity Predictor PREDICT BINDING AFFINITY

Fig. 3 depicts exemplary web-based tool for implementing embodiments

Fig.4 shows a first exemplary interaction in accordance with an embodiment;

RNA subtype	AUROC score	Average precision	Specificity	Sensitivity/Recall	F1-score	MCC
Aptamers	0.97027	0.95724	0.96391	0.97663	0.97209	0.94105
miRNAs	0.96642	0.92525	0.96733	0.96551	0.95522	0.92881
Riboswitches	0.95345	0.92968	0.93607	0.97082	0.95623	0.90833
Viral RNAs	0.98439	0.97949	0.98548	0.98331	0.98520	0.96856

Table 1 depicts performance of the binding affinity prediction models on four classification datasets.

Key Features / Value Proposition

Important Features:

- The system predicts the binding of affinity of novel small molecules to RNA targets from six **RNA subtypes** using **only the RNA sequence** as input.
- The RNA sequence-based features data may be classified into three categories like oligonucleotide or K-tuple nucleotide composition, pseudo-nucleotide composition & structure composition.
- The prediction model generating module may identify the **final feature combination** as the feature combination with the smallest number of features, offering optimal performance, wherein the performance variables may be Pearson correlation coefficient (r) & Mean Absolute Error (MAE).
- Facilitates an **improved performance** of the binding affinity predicting system & also provides a **reduction** in the feature **calculation load** for the binding affinity predicting system. (Refer Fig 4 and Table 1)
- The experimental software model of **RNA-small molecule binding affinity predictor** is shown in Fig. 3.

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719