

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

A GREEN METHOD FOR PREPARING ROBUST AND SUSTAINABLE CELLULOSE-POLYANILINE BASED NANOCOMPOSITE FOR EFFECTIVE REMOVAL OF FLUORIDE FROM WATER AND A PURIFIER THEREOF

IITM Technology Available for Licensing

Problem Statement

Indian Institute of Technology Madras

- Natural fluoride (F⁻) content of water between 1 to 1.5 mg/L is essential for good dental health. However, higher fluoride content of 1.5-4 mg/L can lead to dental and skeletal fluorosis which effects over 200 million people across the globe.
- Conventional methods of using alumina-based membrane technology coagulants, and electrocoagulation either leave an unpleasant taste or are too expensive for public use.
- There is a need for an eco-friendly polymer based nano-cellulose adsorbent with metallic oxyhydroxides to get robust а for improved synergistic composite an performance towards F⁻ removal.

Intellectual Property

- IITM IDF Ref. 1953
- IN 376317 Patent Granted

TRL (Technology Readiness Level)

TRL 5 Technology Validated in Relevant environment

Technology Category/ Market

Category- Green Technology

Industry Classification:

NIC (2008)- 28195- Manufacture of filtering and purifying machinery or apparatus for liquids and gases; 11043- Manufacture of mineral water; **36000-** Water collection, treatment and supply; 20299- Manufacture of various other chemical products n.e.c.

Applications:

Water treatment and purification and fluoride removal from groundwater.

Market drivers:

water treatment market size is expected to rise from US\$ 69.73 billion in 2024 to US\$ 137.17 billion by 2034 with a CAGR of 7%

Research Lab

Prof. T Pradeep

Dept of Chemistry

CONTACT US

Dr. Dara Ajay, Head TTO

Technology Transfer Office, IPM Cell- IC&SR. IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

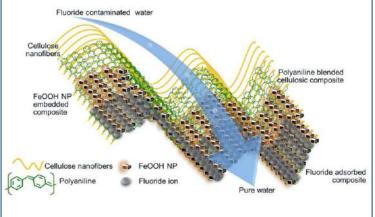


Figure: Illustration of Cellulose Nanofibers-Polyaniline templated Ferrihydrite composite (CNPFH) used for fluoride removal from water.

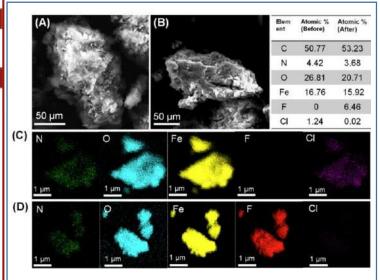


Figure: (A) and (B) show SEM of CNPFH before and after Fadsorption, respectively. (C) and (D) EDS elemental mapping of N, O, Fe, F and Cl of CNPFH before and after F-adsorption, respectively, along with EDS quantification of elements.

IIT MADRAS Technology Transfer Office Indian Institute of Technology Madras

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

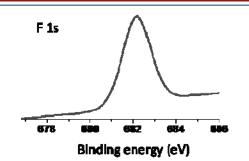


Figure: When the CNPFH sample was left exposed to high amount of F⁻ for 3 h, apart from the 687.3 eV, a peak at 682.5 eV emerges which is due to F binding at the FeOOH site. This has been confirmed by analyzing F- adsorbed cellulose-ferrihydrite composite which shows a peak at 682.1 eV

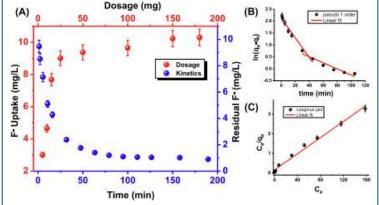


Figure: . Batch studies for the performance of CNPFH (A) as a function of dosage and contact time, (B) pseudo first order, and (C) Langmuir isotherm model for fluoride adsorption from water

Technology

Cellulose Nanofibers-Polyaniline template Ferrihydrite (CNPFH) nanocomposite was

prepared by a green method involving a one pot synthesis process via an in-situ polymerization method.

The ferrihydrite nanoparticles incorporated in the polymeric confinement of cellulose nanofibers and doped N sites of blended PANI function as active sites which operate synergistically for enhanced Fluoride removal

The CNPFH composite exhibited a maximum Fluoride adsorption capacity of 50.8 mg/g

The developed CNPFH composite was also tested for the effect of interfering ions to simulate usage for groundwater applications. CNPFH is able to remove more than 80% of Fluoride in presence of most interfering anions while remaining unaffected by the presence of interfering cations.

Key Features / Value Proposition

IITM TTO Website:

https://ipm.icsr.in/ipm/

- The simple synthesis process yielded a sustainable composite which was used for F⁻ removal from water by means of adsorption.
- CNPFH composite has maximum F- adsorption capacity o 50.8 mg/g which is higher than other PANI based composites
- Though low cost and bio-based adsorbents such as alumina and chitosan are available, they are not completely eco friendly or effective due to issues such as non-plant based source and high polycrystallinity when compared to cellulose based composites.
- The robustness of the composite keeps it free from leaching. Moreover, CNPFH works efficiently in a wide range of pH with fast adsorption kinetics making it a superior option for an industrially feasible green material for delivering affordable water in Fluoride affected communities worldwide.

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

	materials	uptake capacity (mg/g)	max wt % PANI/PPy
of	PANI	0.8	100
s.	PANI/chitosan	5.5	8-10
	PANI/alumina	6.6	11.6
na	FeOOH	23.8	0
D-	PPy/Fe ₃ O ₄	17.6-22.3	83
ed	Ppy/TiO ₂	33.17	9.3
e Se	CNF/PANI/FeOOH	50.8	14.1

Table: The developed CNPFH composite exhibits higher
 fluorine uptake capacity when compared to conventional adsorbents

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719