

Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

A Jet Impingement Cooling System with Improved Showerhead Arrangement for **Gas Turbine Blades**

IITM Technology Available for Licensing

PROBLEMSTATEMENT

- Gas turbines are crucial in aerospace and power industries, with efficiency being a key criterion.
- □ Jet impingement cooling is effective, but blade material safety limits are a concern.
- **Several proposals have been proposed** to improve turbine airfoil cooling performance,
- □ Including multiple impingement cooling circuits, projecting ribs or fins, flow channels, and multiple features for cooling.
- □ However, these methods can lead to pressure loss and backward flow of cooled air.
- □ The addition of projections can increase convective heat transfer area but increase blade weight.
- □ Indirectly reducing turbine engine efficiency and potentially leading to thermal stresses.
- A cooling system with reduced impingement cooling circuits and 3-D protrusions is needed.

TECHNOLOGYCATEGORY MARKET

Technology: Cooling system of turbine blades Category: Aerospace & Defense Technologies Industry: Aviation

Application: Cooling system in Powering aircraft Market: The global gas turbine services market size was valued at USD 33.9 billion in 2022 and is projected to grow at a compound annual growth rate (CAGR) of 8.7% from 2023 to 2030.

INIELLECTUAL PROPERTY

IITM IDF Ref. 1598, Patent No: IN 346399 PCT/IN2018/050615

TRL (Technology Readiness Level)

TRL- 3, Experimental Proof of Concept;

Research Lab

Prof. Prasad B V S S S, **Dept.** of Mechanical Eng.

CONTACT US

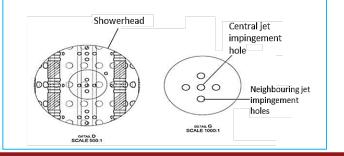

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

TECHNOLOGY

- Utilizes jet impingement cooling system.
- structurally Includes supported impingement inserts and holes/impingement tubes for cooling the leading edge.
- Cooled air from a chamber passes through the tubes, while hot gases pass through the trailing edge.
- A chamfer is made at the exit of the tubes. ensuring **uniformity** and extension in cooling coverage.
- 3-D hemispherical protrusions are disposed at the inner wall of the leading edge for further heat transfer enhancement.

Assembly with impingement tubes fitted to the impingement inserts


1-Impingement insert 2-Leading edge of blade/vane[2a-outer wall,2b-iner wall] 3-Outer wall of air supply chamber

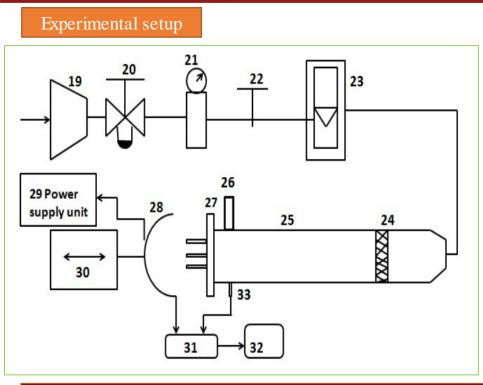
6-Protrusions ,7-Jet impingement tubes

17-Inverted C-shaped support

18-Branches of inverted C-support

Jet impingement inserts arranged in showerhead fashion.

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719



Indian Institute of Technology Madras

T MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Numerals	Definition
19	Air Compressor
20	Filter-Regulator cum moisture separator
21	Pressure gage
22	Needle valve
23	Rotameter
24	Wire screen mesh
25	Settling Chamber (long pipe)
26	Pressure transducer
27	Flange containing jet impingement tubes
28	Test section
29	Power supply and measuring unit
30	Traversing mechanism
31	Data logger
32	Personal computer
33	Thermocouples

Key Features / Value Proposition

Jet cooling & Formation of showerhead

 achieved by directing cooled air through impingement inserts with cylindrical holes, forming a showerhead.

Reduction in Blade weight

 The cylindrical holes form a showerhead, resulting in 3-D protrusions on the inner wall of the leading edge, acting as turbulent promoters and reducing blade weight.

Cooling Insert

 Introduces impingement cooling inserts for turbine blade assembly, providing cooled air path for impingement cooling of the leading edge of the blade.

Showerhead Arrangement

 The shower head arrangement includes multiple jet impingement holes/tubes, modified by chamfering one end facing the blade's leading edge.

Coolant requirements

 The arrangement has homogeneous flow, enhances heat transfer, and extends cooling coverage on the blade's leading edge, reducing coolant requirements

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

Key Performance

 The showerhead arrangement and impingement holes/tubes reduce coolant flow by reducing the number of holes.

Edge distance

 The chamfering can be led or trailed based on turbine operating conditions and jet-toleading edge distance.

Heat transfer

 3-D protrusions in in-line or staggered arrays are used to modify the inner leading edge surface for enhanced heat transfer

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719