

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

BI-DIRECTIONAL RECONFIGURABLE GAIN CIRCUIT FOR POWER CONVERTER APPLICATION IITM Technology Available for Licensing

Problem Statement

Indian Institute of Technology Madras

- Convention bi-directional dc-dc converters are designed to meet the required gains during charging & discharging operations with higher secondary turns of the transformer or by using high gain resonant tank circuits or by specific control techniques.
- However, high secondary turns result in higher transformer parasitic inductances & capacitances, particularly for high voltage applications.
- Present patent addresses the technical problem stating as how to provide an efficient bidirectional power converter to overcome the shortcomings of existing bidirectional converters & subject matter of claimed invention provides efficient solution.

Technology Category/Market

Technology: Bi-Directional Reconfigurable gain circuit; Industry: Energy, Electrical Industries; **Applications:** Power Converter application; Battery charging & etc..

Market: The global bidirectional amplifier market is projected to grow at a CAGR of 13.2% during forecast period (2024-2031).

Technology

- Present invention explains about a power converter circuit comprises
- → a **primary circuit** including full bridge;
- → a resonant tank stage connected to primary circuit:
- secondary circuit connected to the →a resonant tank via a transformer connected to the resonant tank stage.
- Said secondary circuit comprises at least a secondary full bridge, a voltage doubler, and a **Bi-directional Reconfigurable Gain (BRG)** circuit.
- The BRG circuit is configured to be selectively

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

connect to the secondary full bridge during a charging mode & to the voltage doubler during a discharging mode.

- Said resonant tank is a LCLC resonant tank.
- Said BRG circuit comprises at least two of anti-series connected pairs **MOSFETs** switches.
- A **BRG** circuit includes a first switch (S_R), a second switch (S_F) .
- The **First switch** is configured to connect with the secondary full bridge during the charging mode of the power converter circuit.
- The **Secondary switch** is configured to connect with the voltage doubler during the discharging mode of the power converter circuit.

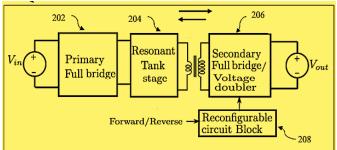


Fig.1 illustrates a block diagram of a bidirectional converter with a reconfigurable circuit block;

Intellectual Property

IITM IDF Ref. 2332; IN Patent No. 482660 (Granted)

TRL (Technology Readiness Level)

TRL-4, Proof of Concept ready, tested and validated in Laboratory

Research Lab

Prof. Lakshminarasamma N; Dept. of Electrical Engineering.

> Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

Indian Institute of Technology Madras

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

* Technical Perspective:

Efficient Techniques:

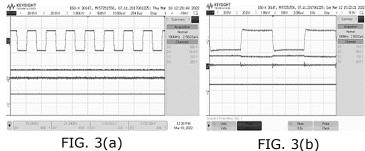
The claimed invention provides a technique for providing a power converter capable of operating in a wide input voltage range with high power conversion efficiency.

Reconfigurable Gain Circuit:

converter Facilitates a power with а reconfigurable gain circuit adept of configuring a secondary circuit of the voltage converter as doubler in discharging mode & as a full bridge circuit in charging mode & a hybrid control scheme along with the BRG circuit to operate the converter for a wide input voltage variation.

Improved Performance:

Improved performance of the converter by **minimizing** the transformer secondary reducina turns and the parasitic inductances and capacitances.


* Industrial Perspective:

Utility:

Applicable in the industry such as **dual** active bridge, resonant tank based like LC or CLLC bi-directional converters, & etc..

Simulation Result

In an exemplary implementation, the BRG circuit is tested for 800 W in charging & discharging mode. The developing 54 V DC bus at the input side and ensures battery charging. The simulation results are shown in FIGs. 3(a) & 3(b).

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/

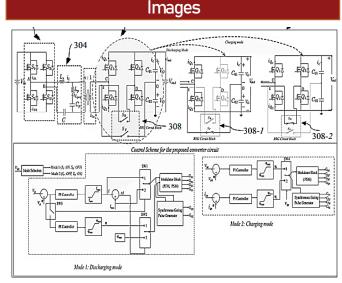


FIG.2a: Illustrates circuit diagram of a LCLC resonant converter with a BRG circuit and hybrid control scheme;

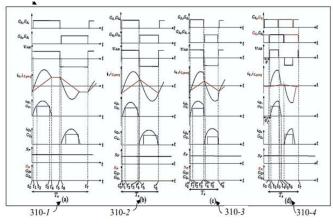


FIG.2b: Illustrates a steady state waveform in forward power transfer mode and frequency modulation;

Exemplary Result

Operating Mode	Converter Gain	Remarks
Discharging Mode (Secondary Voltage Doubler)	$G_1G_2G_3*2$	$G_4 = 2$; voltage doubler (Prefered)
Discharging Mode (Secondary Full bridge Circuit)	$G_1G_2G_3*1$	$G_4 = 1$; Secondary full bridge Circuit (not prefered)
Charging Mode (Secondary Voltage Doubler)	G1G2G3*0.5	$G_4 = 0.5$; Voltage doubler behaves as a half bridge circu (not prefered)
Charging Mode (Secondary Full bridge Circuit)	G1G2G3*1	G ₄ = 1; Secondary full bridge Circuit (Prefered)

Table 1: Steady state converter gain

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719