Technology Transfer Office TTO - IPM Cell

Indian Institute of Technology Madras Industrial Consultancy & Sponsored Research (IC&SR)

MICROWAVE ABSORBING KITCHEN APRON

IITM Technology Available for Licensing

Problem Statement

IT MADRAS

- Leaks from microwave oven used in the kitchen is potentially dangerous to the health of the chef or people working nearby.
- Electromagnetic absorber is a material which absorbs all the radiations falling at the operating frequency while minimizing the transmission and reflection. However, the weight of such absorbers is not suitable for a person to wear it as an apron.
- There is a **need for an apron that is designed** using the concept of metamaterial based absorber and absorbs the microwave at 2.45GHz.

Intellectual Property

- IITM IDF Ref.1504
- IN 513284 Patent Granted

TRL (Technology Readiness Level)

TRL 2 Technology concept formulated

Technology Category/ Market

Category- Advance Material & Manufacturing **Industry Classification:**

- NIC (2008)- 32902 Manufacture of protective safety equipment.
- NAICS (2022)- 339113- Radiation shielding aprons, gloves, and sheeting manufacturing
- Applications: Safety aprons, protective gears, Microwave radiation shields

Market drivers:

The global market for aprons was valued at USD 100 Billion in 2023 and is estimated to reach USD 141.56 Billion by 2030, growing at a CAGR of 4.5%

Research Lab

Prof. Subramanian V Dept. of Physics

Prof. Sarathi R Dept. of Electrical Engineering

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website: https://ipm.icsr.in/ipm/ Email: headtto-icsr@icsrpis.iitm.ac.in

tto-mktg@icsrpis.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

(a)

(b)

(c)

Figure: Schematic representation of unit cell of the proposed absorber. (a) Front view (b) Back view (c) Perspective view. The unit cell in this example (Fig.1) has dimensions, $a_x=27$ mm, $a_y=27$ mm, $a_z=1.58$ mm with the other optimized parameters are W1=8.3mm, w2=0.25mm, =26.5mm.

The invention is a metamaterial based absorber operating at 2.45GHz which is the operating frequency of microwave oven. The substrate used in this absorber is a flexible cloth type which makes the absorber wearable as safeguard apron The metamaterial comprises of a metal-dielectric-metal configuration with metal on both sides of a flexible dielectric substrate (cotton with Dielectric constant of 1.91 and loss tangent of 0.07). The first layer is made of a metal such as copper in cross and square pattern. It is preferably of thickness 36µm and conductivity of 5.8x107S/m.

shows 99.2% absorption at 2.45GHz.

The metamaterial based microwave absorbing structure is flexible, light weight and wearable and can be used to absorb the microwave leaking from the microwave ovens. Whereas, conventional meta-materials are complex and heavy making them unusable in aprons.

- Conventional metamaterials do not act on a number of frequencies and are prone to reflect the incident radiation causing harm to others around. Whereas the invented material effectively absorbs over 99% of the microwave radiation thereby safeguarding the personnel wearing it as well as people around such personnel.
- The disclosed absorber possesses preferable qualities such as thin width, polarization insensitivity and wide angle receptivity. angles. The design absorbs up to 90% of the radiation that falls on the apron within 40 degrees of incidence, irrespective of the nature of polarization.

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: <u>headtto-icsr@icsrpis.iitm.ac.in</u> tto-mktg@icsrpis.iitm.ac.in Phone: +91-44-2257 9756/ 9719