

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

ACCURATE DETERMINATION OF BRILLOUIN FREQUENCY IN BRILLOUIN DISTRIBUTED FIBER SENSORS USING CROSS RECURRENCE PLOT ANALYSIS

IITM Technology Available for Licensing

Problem Statement

- Conventional distributed Brillouin sensors face accuracy limitations due to very low signal-to-noise ratios (SNR), especially at the farther end of the sensing fiber.
- Standard methods like quadratic fitting are error-prone with low SNR signals, leading to inaccuracies in Brillouin frequency shift (BFS) estimation.
- Existing techniques need enhancement to accurately measure BFS over long distances with low SNR, with cross-correlation methods showing promise for improving measurement accuracy.

Intellectual Property

- IITM IDF Ref. 1545
- IN 379844 Patent Granted

TRL (Technology Readiness Level)

TRL - 5: Technology validated in relevant environment.

Technology Category/ Market

Category - Fiber Optic Sensing
Applications - Structural Health Monitoring,
Power Grid & Geotechnical Monitoring
Industry- Telecommunications, Energy
and Utilities, structural monitoring

Market - Global Fiber Optic Sensors Market to Reach \$605.4 Million by 2032 with a CAGR of 6.2%

Research Lab

Prof. Balaji Srinivasan,Dept. of Electrical Engineering, IITM

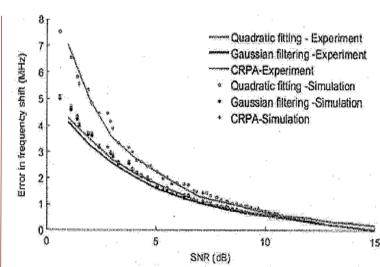


FIG. 1. illustrates the error in Brillouin frequency estimation as a function of SNR.

Technology

Brillouin Scattering and Frequency Shift Measurement: The process involves initiating Brillouin scattering in an optical fiber by propagating an intense optical signal, generating backscattered light with a frequency shift indicative of local acoustic velocity.

Cross Recurrence Plot Analysis (CRPA): The method uses CRPA to compute the Brillouin frequency at various locations along the sensing fiber by comparing a reference spectrum (Lorentzian, Gaussian, or Voigt lineshape) with the measured spectrum. This technique enhances the accuracy of frequency measurement even with low signal-to-noise ratios (SNR <10 dB).

Enhanced Measurement Accuracy: The process is designed to work effectively with distorted Brillouin gain spectra and uses frequency steps greater than 1 MHz.

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras **IITM TTO Website**:

N

2

3

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

1. Enhanced Accuracy

 Utilizes Cross Recurrence Plot Analysis (CRPA) to accurately measure Brillouin frequency shifts, improving precision even in low signal-to-noise ratio conditions.

2. High Sensitivity

 Capable of detecting small changes in temperature and strain with high sensitivity by analyzing the Brillouin gain spectrum.

3. Robust Performance

 Effective in environments with distorted Brillouin gain spectra, maintaining reliable measurements under challenging conditions.

4. Flexible Spectrum Analysis

 Supports various reference spectrum types (Lorentzian, Gaussian, Voigt), providing versatility in different sensing applications.

5. Large-Scale Monitoring:

 Suitable for distributed sensing along extensive optical fiber lengths, enabling comprehensive monitoring of large infrastructures.

Advanced Data Processing

 Employs advanced signal processing techniques to handle low SNR measurements, enhancing the overall performance and accuracy of Brillouin distributed sensors.

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719