

IIT MADRAS Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

A WIRELESS SYSTEM TO MONITOR AND TO PREDICT THE CONSUMPTION AND REMAINING GAS IN A CYLINDER

IITM Technology Available for Licensing

Problem Statement

- LPG is a commonly used cooking fuel supplied through cylinders, but users lack awareness of their daily gas consumption and when the cylinder will run out.
- Existing systems for tracking and analyzing gas consumption have advantages disadvantages related to technology, sensor placement, tracking, prediction, optimization, cost, time, performance, reliability, safety, and efficiency.
- The challenge is to develop an efficient and cost-effective system that provides users with real-time gas consumption data and estimates the time when their LPG cylinder will be empty.

Intellectual Property

- IITM IDF Ref. 977
- IN 387332
- IITM IDF Ref. 1121 (Patent of Addition)
- IN 389165

Technology Category/ Market

Category - IoT & Wireless Sensor Technology Applications- To monitor and to predict the consumption and remaining gas in LPG cylinder. **Industry-** Advanced Manufacturing

Market - Global gas sensor market size was estimated at USD 2.69 billion in 2022 and is expected to reach USD 2.90 billion in 2023, growing at a CAGR of 9.5%.

TRL (Technology Readiness Level)

TRL - 4: Technology validated in lab scale.

Research Lab

Prof. Anjan Chakravorty, Prof. Pradeep Kiran Sarvepalli,

Dept. of Electrical Engineering

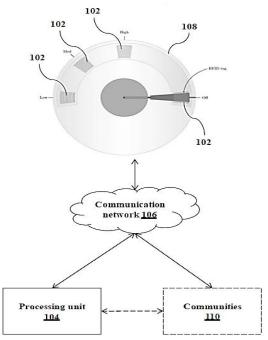


FIG.1. illustrates a high level architecture of a system.

Technology

- The present invention relates to both a system and a method for monitoring LPG consumption and predicting the remaining gas in a cylinder.
- Sensor Placement: Sensors are placed on each position of a knob associated with a switch. This knob controls fuel supply through the switch.
- Sensor Functionality: The sensors send unique signals to indicate the status of fuel use at each knob position.
- Calibration: The method calibrates expected fuel usage time in the cylinder based on past usage data for a specified time period.
- Usage Data: The calibration is done in response to receiving unique signals from the sensors, which represent fuel use.
- Residual Fuel Prediction: The technology uses the calibration data to predict the amount of residual fuel in the cylinder.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR. IIT Madras **IITM TTO Website:**

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Key Features / Value Proposition

Accurate Fuel Monitoring:

The system provides precise fuel consumption tracking for improved resource management.

Predictive Insights:

It predicts residual fuel levels, allowing for timely refillina preventing unexpected and shortages.

Real-time Status Updates:

Sensors offer real-time feedback on fuel usage at different settings for informed decisionmaking.

User-Friendly Interface:

The system is designed with an easy-to-use knob and sensor setup for operator convenience.

Versatile Application:

Applicable in various industries where fuel monitoring is crucial, enhancing operational efficiency and cost savings.

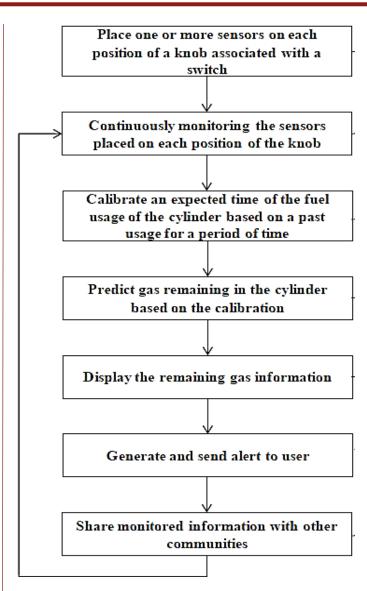


FIG. 2. Flow chart that illustrates a method and system for monitoring gas consumption and predicting remaining gas in a cylinder.

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in Phone: +91-44-2257 9756/ 9719