

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

A METHOD OF IONIZATION ON A 2D-NANOSTRUCTURED SURFACE IITM Technology Available for Licensing

Problem Statement

- Generally, mass spectrometry has been used for a century as an analytical technique to study materials & ionization is the primary step in mass spectrometric analysis.
- There are many ion sources discussed in the prior arts literature like carbon nano tubes, 1D nano structures, thermospray, sonic spray & etc. However, said ion sources is not able to produce ion without external energy with other issues.
- Hence, there is a need to address the issues & present invention provides the solution in efficient manner.

Technology Category/ Market

Technology: 2D-nanostructured-MoS2-coated

paper surface

Industry: Chemical, Pharmaceutical;

Applications: Standard coated

detecting alcohol in breath;

Market: The global coated paper market is projected to grow, at a CAGR of 4.5% during (2023-2030).

Intellectual Property

IITM IDF Ref. 2133; Patent No: 383701

Technology

- Present patent claimed а method ionization on а 2D-nanostructured surface.
- Said method comprises the steps of:

fabricating a 2D-nanostructured-MoS2coatedpaper surface

 placing two silver contacts on top of nanostructured surface connected to a picoammeter; &

protic solvents containing flowing analytes the nanostructured over surface;

- The nanostructured surface is kept at an inclined angle for free flowing of the solvents to induce a dipole-dipole interaction leading to the dissociation of solvent molecules.
- The anions of the dissociated molecules move with the flow resulting in charge separation, & the movement of these negatively charged ions generate electrokinetic current for ionizina analyte molecules, without any external power source.

Key Features / Value Proposition

Technical Perspective:

- Proposed method facilitates 2Dnanostructured-MoS2-coated paper surface which is fabricated as a breath alcohol sensor by flowing acetone over the nanostructured surface & blowing alcoholic breath to generate an electrokinetic current due to ionized alcohol, wherein current generated over a 1x1 mm2 nanostructured surface is 1.3 A/m2.
- The **magnitude** of the **current** varies depending on the concentration of alcohol present in the vapor.

Industrial Perspective:

- The 2D-nanostructured-MoS2-coated paper surface detects uric acid levels in body fluids when raw urine sample is flown over the nanostructured surface.
- 2. Provide a 2D-MoS2-coated paper-based disposable sensor for detecting alcohol in breath.

TRL (Technology Readiness Level)

TRL-4, Proof of Concept & validated in Lab

Research Lab

Prof. Pradeep T Dept. of Chemistry

CONTACT US

1

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in

sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

A METHOD OF IONIZATION ON A 2D-NANOSTRUCTURED SURFACE IITM Technology Available for Licensing

Images with Experimental Results

Fig.1: Illustrates the liquid flow over MoS2coated paper in the device,

- a) Schematic representation of the device fabricated flow-induced the current potential generation.
- b) Side view of the electrode area. 'd' is the contact distance. Positive and negative ions are shown as spheres.

Fig.2: illustrates a MoS2-coated paper dipping experiment. The MoS2-coated paper was dipped inside a vial containing methanol and current was recorded with time. A sudden increase and subsequent fall in current was observed. The inset schematically represents the experimental setup.

illustrates Fig. the flow direction and the of the polarity current.

Fig.4: Illustrates the effect of electron scavenging molecule during current generation.

CONTACT US

Dr. Dara Ajay, Head Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: smipm-icsr@icsrpis.iitm.ac.in sm-marketing@imail.iitm.ac.in

Phone: +91-44-2257 9756/ 9719