

Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

A METHOD OF PRODUCIG FOILS USING LSEM FIXTURE IITM Technology Available for Licensing

PROBLEM STATEMENT

- Nanocrystalline (grain size < 100 nm) and ultra-fine-grained (grain size between 100 nm and 1000 nm) materials are characterized by superior mechanical properties vis-a-vis their conventional counterparts.
- ➤ Large strain extrusion machining (LSEM) is a severe plastic deformation process used to produce nano crystalline and ultra-fine-grained chips or shavings due to its enhanced mechanical properties, including hardness, strength, ductility, fracture toughness, fatigue life, and wear resistance.
- Furthermore, this process has the potential to be a low-cost alternative for the production of fine grained chips in the form of sheets, foils, and rods especially from high strength metals and alloys.

TECHNOLOGYCATEGORY MARKET

Technology: Producig foils using LSEM

fixture

Category: Advance Material & Manufacturing

Industry: Manufacturing

Application: Automotive, Machine tool

Market: The global market size was estimated at USD 92.78 billion in 2023 and is anticipated to grow at a CAGR of 5.8% from

2024 to 2030.

INIELLECTUAL PROPERTY

IITM IDF Ref. 1386 Patent No: IN 365294

TRL (Technology Readiness Level)

TRL-4, Experimentally validated in Lab;

Research Lab

Prof. Murthy H S N, Dept. of Aerospace Engineering &

Prof. Balakrishna C Rao, Dept. of Engineering Design

TECHNOLOGY

A fixture for holding a cutting tool to provide constraint during large strain extrusion machining (LSEM) with higher chip compression ratio to produce fine-grained foils, characterized by:-

A Ti-6Al-4V plate with a strong transverse texture which is suitably textured by the cold-rolling process to suppress shear localization in the extrusion-machined foils.

A **fixture with a wedge-shaped slot** provided to facilitate the flow of foils, and

A cutting tool positioned in the fixture with a groove type restricted contact for performing large strain extrusion machining.

I

Numerals	Definition
1	CONSTRAINT
2	CUTTING TOOL
3	FOIL
4	WORKPIECE

CONTACT US

Dr. Dara Ajay, Head TTOTechnology Transfer Office,
IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: <u>headtto-icsr@icsrpis.iitm.ac.in</u>

tto-mktg@icsrpis.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Fig 2 shows a Variation of shear strain (y) with chip compression ratio (λ .) For different rake angles (α).

Fig 4 shows a groove type restricted-contact tool with 5° rake angle and 0.5mm restricted-contact length

7-5° RAKE ANGLE WITH 0.5 mm RESTRICTED CONTACT LENGTH ,8- GROOVE,

9-TUNGSTEN CARBIDE INSERT, 10-EN8 TOOL HOLDER

Fig 3 a & 3b shows a Large strain extrusion machining fixture with a chip compression ratio (λ.) Of 1.4

5 - Tungsten carbide block brazed to the LSEM fixture 6- Groove provided for chip flow

Fig 5a & 5b shows a Sample reference frame and direction of cutting tool movement

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: headtto-icsr@icsrpis.iitm.ac.in

tto-mktg@icsrpis.iitm.ac.in

Phone: +91-44-2257 9756/ 9719

Technology Transfer Office TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

Fig 6 shows a recalculated (0002) pole figures of (a) asreceived and (b) as received 47% cold-rolled bulk samples.

Fig 7 shows a optical micrograph of the (a) as-received, (b) as-received 47% cold-rolled bulk samples

Fig 8 shows a optical micrograph of foil from (a) as-received bulk, (b) as received 47% cold-rolled bulk during the extrusion-machining process

Key Features / Value Proposition

"Suppressing Shear Localization in Ti-6Al-4V"

- Modification of fixture in Ti-6Al-4V via cold-rolling.
- Extrusion-machining of textured plates using higher compression ratio.
- Fine-grained continuous foils with increased hardness.
- Reduced friction during extrusion-machining.

Fixture Features:

- Chip compression ratio: 1.4
- EN8 tool holder with brazed tungsten carbide insert.
- The fixture was employed to produce low cost ultra fine grained Ti-6Al-4V foils from its bulk.
- Having design and fabrication of a fixture which acts as a constraint during large strain extrusion machining process

CONTACT US

Dr. Dara Ajay, Head TTOTechnology Transfer Office,
IPM Cell- IC&SR, IIT Madras

IITM TTO Website:
https://ipm.icsr.in/ipm/

Email: headtto-icsr@icsrpis.iitm.ac.in

tto-mktg@icsrpis.iitm.ac.in

Phone: +91-44-2257 9756/ 9719