

Industrial Consultancy & Sponsored Research (IC&SR)

VISIBLE LIGHT-DRIVEN ORDERED MESOPOROUS TIO₂ AND ITS TCPP-FUNCTIONALISED PHOTOCATALYST FOR COMPLETE MINERALIZATION OF PHARMACEUTICAL **CONTAMINANTS IN WATER**

IITM Technology Available for Licensing

PROBLEM STATEMENT

- o There is growing concern over pharmaceutical and organic pollutants, such as famotidine (FAM) and its by-products, in surface and groundwater, which can negatively impact human health, wildlife. and ecosystems.
- o Wastewater treatment plants (WWTPs) often fail to fully remove these contaminants, allowing them to enter water bodies and potentially drinking water. As a result, there is a significant push to enhance water treatment technologies, including the development of advanced oxidation processes (AOPs).
- o Semiconductor photocatalysts like titanium dioxide (TiO₂) have shown potential for sustainable water treatment due to their low cost, stability, and non-toxicity. However, TiO₂'s reliance on UV light activation, due to its large energy band gap, limits its efficiency, particularly in using visible or solar light.
- o Although TiO₂ photocatalysis has been studied for pharmaceutical pollutant degradation, it often results in only partial removal. Furthermore, the intermediates formed during degradation may also be harmful, presenting an additional challenge.
- Therefore, there is a need to develop methods for the complete mineralization of FAM and its intermediates to ensure effective water purification.

INTELLECTUAL PROPERTY

IITM IDF Ref. - 2607 Patent No: IN - 539302

TRL (Technology Readiness Level)

TRL-3- Experimental Proof of concept

TECHNOLOGY CATEGORY/ MARKET

Technology category: Micro & Nano Technologies Industry: Water treatment, pollution control Applications: Pharma effluent treatment Market: Pharmaceutical Waste Management Market Size can be USD 5.6 billion in 2025

Research Lab

Prof. Parasuraman Selvam Department of Chemistry

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

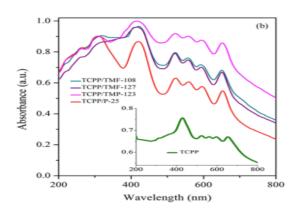
IITM TTO Website: https://ipm.icsr.in/ipm/

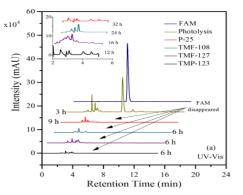
(b) (d) 50 nn (f) 20 nm 111

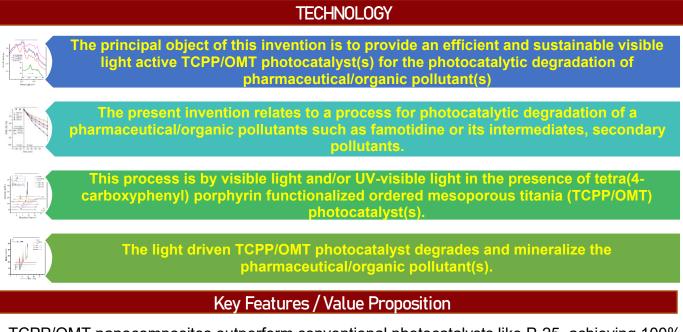
Transmission Electron Microscopy images (a) TMF-108; (b) TCPP/TMF-108; (c) TMF-127; (d) TCPP/TMF-127; (e) TMP-123; (f) TCPP/TMP-123; (g) P-25 and (h) TCPP/P-25

> Email: headtto-icsr@icsrpis.iitm.ac.in tto-mktg@icsrpis.iitm.ac.in

Phone: +91-44-2257 9756/ 9719






Industrial Consultancy & Sponsored Research (IC&SR)

DRUV-VIS spectra of: (b) TCPP-functionalised OMTs and P-25. Photocatalytic degradation of FAM under polychromatic UV-Vis light.

Complete mineralization under UV-Vis: (a) Photocatalytic FAM disappearance over various photocatalyst.

- TCPP/OMT nanocomposites outperform conventional photocatalysts like P-25, achieving 100% degradation of famotidine (FAM) under similar conditions, showing better efficacy.
- Unlike traditional photocatalysts, TCPP/OMT composites are effective against a wide range of pharmaceutical pollutants, ideal for addressing waterborne pharmaceutical contamination.
- The TCPP/OMT nanocomposites feature a high surface area and mesoporous structure, enhancing adsorption and interaction with pollutants for more efficient photocatalysis.
- The preparation method for TCPP-functionalized OMT nanocomposites is simple, scalable, and cost-efficient, using readily available reagents and solvents for mass production.
- TCPP/OMT nanocomposites not only degrade primary pollutants but also mineralize secondary intermediates completely, resulting in non-toxic, environmentally safe by-products.

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: <u>headtto-icsr@icsrpis.iitm.ac.in</u> tto-mktg@icsrpis.iitm.ac.in Phone: +91-44-2257 9756/9719