

Industrial Consultancy & Sponsored Research (IC&SR)

MICROFLUIDIC DEVICE WITH REMOVABLE CAPILLARIES IITM Technology Available for Licensing

Problem Statement

T MADRAS

Indian Institute of Technology Madras

- Conventional bulk emulsification creates polydisperse emulsions, affecting stability, texture, appearance and shelf life. Monodisperse emulsions with narrow droplet distribution offer better stability.
- Microfluidic approaches enable monodisperse emulsions; however, existing devices struggle with solvent compatibility, ease of adjustments, and cost-effectiveness of fabrication.
- Current glass capillary microfluidic devices face issues like solvent incompatibility and require use of adhesives while being expensive with complex fabrication tools for capillary adjustments.
- There is a need for a glass capillary microfluidic device that is solvent-compatible, easily adjustable, with easy replacement of clogged capillaries while being economic to fabricate.

Intellectual Property

- IITM IDF Ref 2496
- IN 457547 Patent Granted

TRL (Technology Readiness Level)

TRL 4 Technology Validated in Lab

Technology Category/ Market

Category- Micro & Nano Technologies

Industry Classification:

Pharmaceuticals; Food & Beverages; Cosmetics **Applications:**

Controlled drug release, particularly in formulations with drugs like Metformin ; creams, lotions, and other emulsions where consistency and particle size control are critical ; Microencapsulation for Agricultural Products ; controlled-release formats, enhancing the efficacy and reducing environmental impact

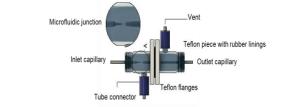
Market report:

Microfluidic Droplet Generator Market was valued at USD 1.2 Billion in 2023 and is projected to grow to USD 3.5 Billion by the end of 2030 with a CAGR of 17.5%

Research Lab

Prof. Raghunathan Rengaswamy Dept. of Chemical Engineering

Prof. Basavaraja Madivala Gurappa Dept. of Chemical Engineering


CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras IITM TTO Website: https://ipm.icsr.in/ipm/ Email: headtto-icsr@icsrpis.iitm.ac.in

tto-mktg@icsrpis.iitm.ac.in

Phone: +91-44-2257 9756/ 8369

Figure: Photograph of the components of the modular microfluidic device and a schematic illustrating the device.

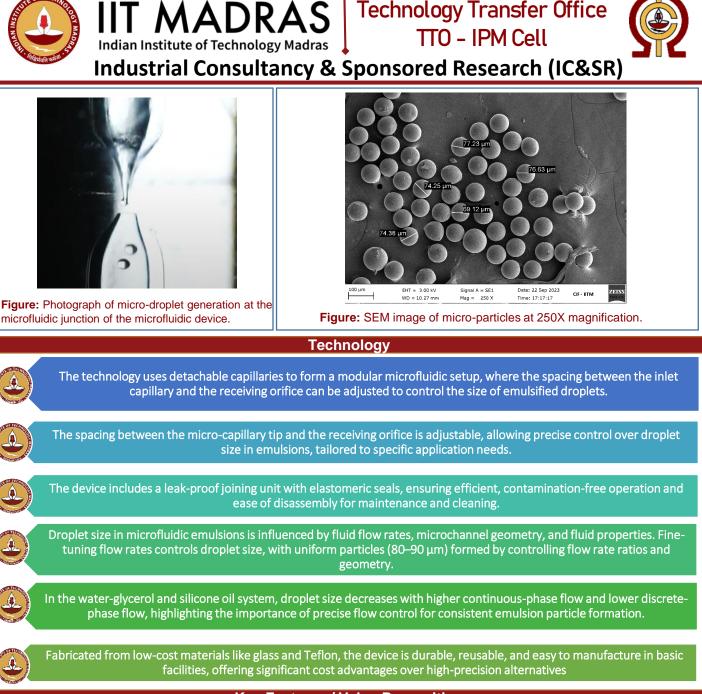


Figure: Photograph of assembled glass microfluidic device.

Fabricate a MMFD (100) with a chamber formed by joining two identical vials and a capillary compartment with a plug
Pretreat surfaces of capillaries with hydrophobic/ hydrophilic coatings appropriately
Insert removable capillaries units through the plug at each end
Pump continuous phase into the chamber and discrete phase into the inlet capillary at predetermined flow rates
Place co-axially at predetermined distance, the tip of the inlet capillary and orifice of receiving capillary to form emulsion of discrete phase in continuous phase with droplets of preferred size
Drain emulsion through outlet of receiving capillary
Collect emulsion directly / solidify particles with uniform size and shape

Figure: An illustration of a method of preparing a mono-disperse emulsion using a modular microfluidic device

Technology Transfer Office

Key Features / Value Proposition

- The device features detachable capillaries for easy adjustments and replacements, allowing versatility in the preparation of monodisperse emulsions.
- The spacing between the inlet capillary's micro-capillary tip and receiving orifice can be adjusted to control the droplet size of emulsions.
- The use of simple components and manual fabrication makes this device cost-effective compared to complex, high-precision alternatives.
- Traditional devices often face clogging or compatibility issues with solvents. This device addresses these issues, especially for organic or hydrocarbon solvents.
- Existing systems often require complex cleaning procedures or are prone to contamination. This device's design allows easy disassembly and simplifies cleaning and reusability.
- Many conventional devices are limited to fixed droplet sizes, while this invention allows for adjustable droplet sizes, enhancing customization and control.
- The device is simple to fabricate with low-cost materials and is durable for long-term use, unlike high-cost or precision-required devices.

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras

IITM TTO Website:

https://ipm.icsr.in/ipm/

Email: headtto-icsr@icsrpis.iitm.ac.in tto-mktg@icsrpis.iitm.ac.in

Phone: +91-44-2257 9756/ 8369