

TTO - IPM Cell

Industrial Consultancy & Sponsored Research (IC&SR)

A CASTING METHOD FOR PRODUCING HIGH-PERFORMANCE MAGNESIUM **ALLOY**

IITM Technology Available for Licensing

PROBLEMSTATEMENT

- > Magnesium alloys, made from magnesium and other alloying metals, are used in lightweight applications.
- > Casting processes are common for these alloys, but they face challenges like dendrite formation, microporosity, hot tears, nonhomogenized microstructure. and poor mechanical properties.
- > Various methods have been explored to create defect-free, high-strength AZ91 alloys.
- > The current invention overcomes these issues, resulting in a cast magnesium alloy with a homogenized microstructure improved mechanical properties.

TECHNOLOGYCATEGORY MARKET

Technology: Casting Method For Producing High-

performance Magnesium Alloy

Category: Advance Material & Manufacturing

Industry: Manufacturing / Chemical **Application:** Casting of magnesium alloy

Market: The global market size is USD 2545.2 million in 2024. It will expand at a compound annual growth rate (CAGR) of 9.00% from 2024 to

2031.

INTELLECTUAL PROPERTY

IITM IDF Ref. 2778 Patent No: IN 550671

TRL (Technology Readiness Level)

Experimentally validated in Lab;

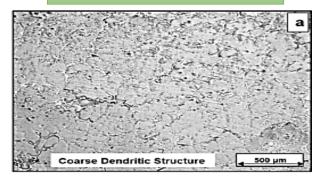
Research Lab

Prof. Sushanta Kumar Panigrahi, Dept. of Mechanical Engineering

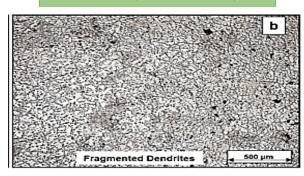
TECHNOLOGY

A method of casting a magnesium alloy

 Melting the magnesium alloy to obtain an alloy melt


 Subjecting the alloy melt obtained in step a) to horizontal and vertical agitation motion

 Introducing inert gas pockets when the alloy melt temperature reaches its melting point and temperature range is 580-585 °C


 The gas pockets are introduced at a discharge rate of - 6-8 I/min till a semi solid temperature range is reached with agitation in horizontal and vertical direction

 The semi solid Cooling the alloy melt with gas pockets from step c) to yield a cast magnesium alloy.

a. Conventional Cast

b. Cast made by method encompass

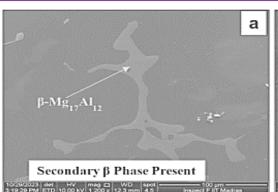
CONTACT US

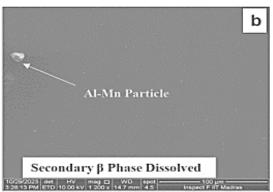
Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras **IITM TTO Website:**

https://ipm.icsr.in/ipm/

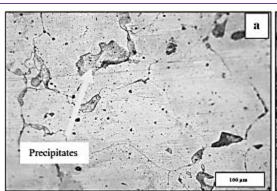
Email: headtto-icsr@icsrpis.iitm.ac.in

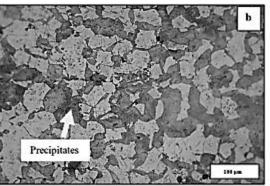
tto-mktg@icsrpis.iitm.ac.in


Phone: +91-44-2257 9756/ 9719



TTO - IPM Cell




Industrial Consultancy & Sponsored Research (IC&SR)

SEM Images of cast after 12 hours Solution **Treatment** a) Conventional Cast Cast made by method encompassed

Optical Images Peak Aged a) Conventional Cast b) Cast made bv method encompassed

Key Features / Value Proposition

- Magnesium Alloy Melting Overview
- Melting magnesium alloy in blocks.
- No reinforcement, foreign particles, rare earth elements.
- Melting at 700-720°C range.
- Casting Magnesium Alloy:
- Composed of 8-10% aluminum.
- Containing 0.5-2% zinc.
- Gas Pocket Maintenance
- Maintains 25-530 µm diameter gas pockets.
- Agitating melt done by impeller at 200-250 RPM.
- Cast Magnesium Alloy Strength
- •220-280 Mpa,4-8% ductility,80HV.

- Inert gas:
- Argon
- Melted Alloy and Gas Pockets Maintenance
- Surface tension between alloy and gas pockets: 505-510 N/m.
- •Impeller cavities: 1-3mm in diameter.

Cast magnesium alloy subjected to solution treatment and optional aging treatment.

- Solution treatment: Heating the alloy to 400-500°C for 10-14 hours.
- Aging treatment: Heating the metal to 170-190°C for 18-24 hours.

CONTACT US

Dr. Dara Ajay, Head TTO Technology Transfer Office, IPM Cell- IC&SR, IIT Madras **IITM TTO Website:**

https://ipm.icsr.in/ipm/

Email: headtto-icsr@icsrpis.iitm.ac.in

tto-mktg@icsrpis.iitm.ac.in

Phone: +91-44-2257 9756/ 9719